GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data

被引:4
作者
Zhang, Tianjiao [1 ]
Zhang, Ziheng [1 ]
Li, Liangyu [1 ]
Dong, Benzhi [1 ]
Wang, Guohua [1 ,2 ,4 ]
Zhang, Dandan [3 ,5 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin, Peoples R China
[2] Northeast Forestry Univ, Key Lab Tree Genet & Breeding, Harbin, Peoples R China
[3] Harbin Med Univ, Affiliated Hosp 1, Dept Gynaecol & Obstet, Harbin, Peoples R China
[4] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[5] Harbin Med Univ, Affiliated Hosp 1, Dept Obstet & Gynecol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type identification; graph attention networks; single-cell RNA sequencing; spatial transcriptomics; GENOME-WIDE EXPRESSION; SINGLE-CELL; GENE-EXPRESSION; TRANSCRIPTOMICS;
D O I
10.1093/bib/bbad469
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the emergence of spatial transcriptome sequencing (ST-seq), research now heavily relies on the joint analysis of ST-seq and single-cell RNA sequencing (scRNA-seq) data to precisely identify cell spatial composition in tissues. However, common methods for combining these datasets often merge data from multiple cells to generate pseudo-ST data, overlooking topological relationships and failing to represent spatial arrangements accurately. We introduce GTAD, a method utilizing the Graph Attention Network for deconvolution of integrated scRNA-seq and ST-seq data. GTAD effectively captures cell spatial relationships and topological structures within tissues using a graph-based approach, enhancing cell-type identification and our understanding of complex tissue cellular landscapes. By integrating scRNA-seq and ST data into a unified graph structure, GTAD outperforms traditional 'pseudo-ST' methods, providing robust and information-rich results. GTAD performs exceptionally well with synthesized spatial data and accurately identifies cell spatial composition in tissues like the mouse cerebral cortex, cerebellum, developing human heart and pancreatic ductal carcinoma. GTAD holds the potential to enhance our understanding of tissue microenvironments and cellular diversity in complex bio-logical systems. The source code is available at https://github.com/zzhjs/GTAD.
引用
收藏
页数:13
相关论文
共 45 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/2951913.2976746, 10.1145/3022670.2976746]
[2]   Random projection forest initialization for graph convolutional networks [J].
Alshammari, Mashaan ;
Stavrakakis, John ;
Ahmed, Adel F. ;
Takatsuka, Masahiro .
METHODSX, 2023, 11
[3]   A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart [J].
Asp, Michaela ;
Giacomello, Stefania ;
Larsson, Ludvig ;
Wu, Chenglin ;
Furth, Daniel ;
Qian, Xiaoyan ;
Wardell, Eva ;
Custodio, Joaquin ;
Reimegard, Johan ;
Salmen, Fredrik ;
Osterholm, Cecilia ;
Stahl, Patrik L. ;
Sundstrom, Erik ;
Akesson, Elisabet ;
Bergmann, Olaf ;
Bienko, Magda ;
Mansson-Broberg, Agneta ;
Nilsson, Mats ;
Sylven, Christer ;
Lundeberg, Joakim .
CELL, 2019, 179 (07) :1647-+
[4]   Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization [J].
Baccin, Chiara ;
Al-Sabah, Jude ;
Velten, Lars ;
Helbling, Patrick M. ;
Gruenschlaeger, Florian ;
Hernandez-Malmierca, Pablo ;
Nombela-Arrieta, Cesar ;
Steinmetz, Lars M. ;
Trumpp, Andreas ;
Haas, Simon .
NATURE CELL BIOLOGY, 2020, 22 (01) :38-+
[5]   CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data [J].
Bae, Sungwoo ;
Na, Kwon Joong ;
Koh, Jaemoon ;
Lee, Dong Soo ;
Choi, Hongyoon ;
Kim, Young Tae .
NUCLEIC ACIDS RESEARCH, 2022, 50 (10) :E57
[6]   Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment [J].
Barkley, Dalia ;
Moncada, Reuben ;
Pour, Maayan ;
Liberman, Deborah A. ;
Dryg, Ian ;
Werba, Gregor ;
Wang, Wei ;
Baron, Maayan ;
Rao, Anjali ;
Xia, Bo ;
Franca, Gustavo S. ;
Weil, Alejandro ;
Delair, Deborah F. ;
Hajdu, Cristina ;
Lund, Amanda W. ;
Osman, Iman ;
Yanai, Itai .
NATURE GENETICS, 2022, 54 (08) :1192-+
[7]   Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity [J].
Berglund, Emelie ;
Maaskola, Jonas ;
Schultz, Niklas ;
Friedrich, Stefanie ;
Marklund, Maja ;
Bergenstrahle, Joseph ;
Tarish, Firas ;
Tanoglidi, Anna ;
Vickovic, Sanja ;
Larsson, Ludvig ;
Salmen, Fredrik ;
Ogris, Christoph ;
Wallenborg, Karolina ;
Lagergren, Jens ;
Stahl, Patrik ;
Sonnhammer, Erik ;
Helleday, Thomas ;
Lundeberg, Joakim .
NATURE COMMUNICATIONS, 2018, 9
[8]   Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells [J].
Brown, Amanda M. ;
Arancillo, Marife ;
Lin, Tao ;
Catt, Daniel R. ;
Zhou, Joy ;
Lackey, Elizabeth P. ;
Stay, Trace L. ;
Zuo, Zhongyuan ;
White, Joshua J. ;
Sillitoe, Roy V. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[10]   Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease [J].
Chen, Wei-Ting ;
Lu, Ashley ;
Craessaerts, Katleen ;
Pavie, Benjamin ;
Frigerio, Carlo Sala ;
Corthout, Nikky ;
Qian, Xiaoyan ;
Lalakova, Jana ;
Kuhnemund, Malte ;
Voytyuk, Iryna ;
Wolfs, Leen ;
Mancuso, Renzo ;
Salta, Evgenia ;
Balusu, Sriram ;
Snellinx, An ;
Munck, Sebastian ;
Jurek, Aleksandra ;
Navarro, Jose Fernandez ;
Saido, Takaomi C. ;
Huitinga, Inge ;
Lundeberg, Joakim ;
Fiers, Mark ;
De Strooper, Bart .
CELL, 2020, 182 (04) :976-+