Propagating Uncertainty in Predicting Individuals and Means Illustrated with Foliar Chemistry and Forest Biomass

被引:1
作者
Yanai, Ruth D. [1 ]
Drake, John E. [1 ]
Buckley, Hannah L. [2 ]
Case, Bradley S. [2 ]
Lilly, Paul J. [3 ]
Woollons, Richard C. [4 ]
Gamarra, Javier G. P. [5 ]
机构
[1] SUNY, Coll Environm Sci & Forestry, Dept Sustainable Resources Management, 1 Forestry Dr, Syracuse, NY 13210 USA
[2] Auckland Univ Technol, Sch Sci, 34 St Paul St, Auckland 1010, New Zealand
[3] EP Carbon, 2930 Shattuck Ave, Berkeley, CA 94705 USA
[4] Univ Canterbury, Sch Forestry, Private Bag 4800, Christchurch, New Zealand
[5] Food & Agr Org United Nations, Forestry Div, Viale Terme Caracalla, I-00153 Rome, Italy
关键词
allometric models; forest biomass; nutrient budgets; Monte Carlo error propagation; uncertainty in regression; foliar calcium; forest carbon; Hubbard Brook; HUBBARD BROOK ECOSYSTEM; CARBON; ESTIMATORS;
D O I
10.1007/s10021-023-00886-6
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Quantifying uncertainty is important to establishing the significance of comparisons, to making predictions with known confidence, and to identifying priorities for investment. However, uncertainty can be difficult to quantify correctly. While sampling error is commonly reported based on replicate measurements, the uncertainty in regression models used to estimate forest biomass from tree dimensions is commonly ignored and has sometimes been reported incorrectly, due either to lack of clarity in recommended procedures or to incentives to underestimate uncertainties. Even more rarely are the uncertainty in predicting individuals and the uncertainty in the mean both recognized for their contributions to overall uncertainty. In this paper, we demonstrate the effect of propagating these two sources of uncertainty using a simple example of calcium concentration of sugar maple foliage, which does not require regression, then the mass of foliage and calcium content of foliage, and finally an entire forest with multiple species and tissue types. The uncertainty due to predicting individuals is greater than the uncertainty in the mean for studies with few trees-up to 30 trees for foliar calcium concentration and 50 trees for foliar mass and calcium content in the data set we analyzed from the Hubbard Brook Experimental Forest. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks can safely ignore the uncertainty in individuals, which becomes negligible with large enough numbers of trees. Ignoring the uncertainty in the mean will result in exaggerated confidence in estimates of forest biomass and carbon and nutrient contents.
引用
收藏
页码:250 / 264
页数:15
相关论文
共 33 条
[1]  
BASKERVILLE G L, 1972, Canadian Journal of Forest Research, V2, P49, DOI 10.1139/x72-009
[2]   Perils, pitfalls, and possibilities in talking about medical risk [J].
Bogardus, ST ;
Holmboe, E ;
Jekel, JF .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1999, 281 (11) :1037-1041
[3]   Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume [J].
Breidenbach, Johannes ;
McRoberts, Ronald E. ;
Astrup, Rasmus .
REMOTE SENSING OF ENVIRONMENT, 2016, 173 :274-281
[4]  
Drake J.E, 2023, GITHUB REPOSITORY RE
[5]  
Draper N., 1998, Applied regression analysis, DOI DOI 10.1002/9781118625590
[6]   A Model-Based Volume Estimator that Accounts for Both Land Cover Misclassification and Model Prediction Uncertainty [J].
Esteban, Jessica ;
McRoberts, Ronald E. ;
Fernandez-Landa, Alfredo ;
Tome, Jose Luis ;
Marchamalo, Miguel .
REMOTE SENSING, 2020, 12 (20) :1-25
[7]   The biogeochemistry of carbon at Hubbard Brook [J].
Fahey, TJ ;
Siccama, TG ;
Driscoll, CT ;
Likens, GE ;
Campbell, J ;
Johnson, CE ;
Battles, JJ ;
Aber, JD ;
Cole, JJ ;
Fisk, MC ;
Groffman, PM ;
Hamburg, SP ;
Holmes, RT ;
Schwarz, PA ;
Yanai, RD .
BIOGEOCHEMISTRY, 2005, 75 (01) :109-176
[8]   BAAD: a Biomass And Allometry Database for woody plants [J].
Falster, Daniel S. ;
Duursma, Remko A. ;
Ishihara, Masae I. ;
Barneche, Diego R. ;
Fitzjohn, Richard G. ;
Varhammar, Angelica ;
Aiba, Masahiro ;
Ando, Makoto ;
Anten, Niels ;
Aspinwall, Michael J. ;
Baltzer, Jennifer L. ;
Baraloto, Christopher ;
Battaglia, Michael ;
Battles, John J. ;
Bond-Lamberty, Ben ;
van Breugel, Michiel ;
Camac, James ;
Claveau, Yves ;
Coll, Lluis ;
Dannoura, Masako ;
Delagrange, Sylvain ;
Domec, Jean-Christophe ;
Fatemi, Farrah ;
Feng, Wang ;
Gargaglione, Veronica ;
Goto, Yoshiaki ;
Hagihara, Akio ;
Hall, Jefferson S. ;
Hamilton, Steve ;
Harja, Degi ;
Hiura, Tsutom ;
Holdaway, Robert ;
Hutley, Lindsay S. ;
Ichie, Tomoaki ;
Jokela, Eric J. ;
Kantola, Anu ;
Kelly, Jeff W. G. ;
Kenzo, Tanaka ;
King, David ;
Kloeppel, Brian D. ;
Kohyama, Takashi ;
Komiyama, Akira ;
Laclau, Jean-Paul ;
Lusk, Christopher H. ;
Maguire, Douglas A. ;
le Maire, Guerric ;
Makela, Annikki ;
Markesteijn, Lars ;
Marshall, John ;
McCulloh, Katherine .
ECOLOGY, 2015, 96 (05) :1445-1445
[9]   Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California [J].
Gonzalez, Patrick ;
Asner, Gregory P. ;
Battles, John J. ;
Lefsky, Michael A. ;
Waring, Kristen M. ;
Palace, Michael .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1561-1575
[10]   Rotating machinery prognostics: State of the art, challenges and opportunities [J].
Heng, Aiwina ;
Zhang, Sheng ;
Tan, Andy C. C. ;
Mathew, Joseph .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (03) :724-739