EEG complexity-based algorithm using Multiscale Fuzzy Entropy: Towards detection of Alzheimer's disease

被引:9
作者
Cataldo, Andrea [1 ]
Criscuolo, Sabatina [2 ]
De Benedetto, Egidio [2 ]
Masciullo, Antonio [1 ]
Pesola, Marisa [2 ]
Picone, Joseph [3 ]
Schiavoni, Raissa [1 ]
机构
[1] Univ Salento, Dept Engn Innovat, Lecce, Italy
[2] Univ Naples Federico II, Dept Informat Technol & Elect Engn, Naples, Italy
[3] Temple Univ, Dept Elect & Comp Engn, Philadelphia, PA USA
关键词
Alzheimer's disease; Complexity; Measures; Electroencephalography; Multiscale fuzzy entropy; Neurodegenerative diseases; MILD COGNITIVE IMPAIRMENT; QUANTITATIVE EEG; RESTING-STATE; SIGNAL;
D O I
10.1016/j.measurement.2023.114040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alzheimer's Disease (AD) is a progressive neurodegenerative condition causing memory, attention, and language decline. Current AD diagnostic methods lack objectivity and non-invasiveness. While electroen-cephalography (EEG) holds promise for AD research, conventional EEG analysis methods have proven unsatisfactory. Non-linear dynamical approaches are considered more effective in assessing the brain's complex nature. Starting from these considerations, this study presents an entropy-based algorithm utilizing Multiscale Fuzzy Entropy (MFE) as a promising, effective AD diagnostic method. Computed across 20 different time scales for a public dataset, MFE showed a significant discriminative power. Notably, a trend inversion was observed in the results: AD subjects displayed higher complexity values for slow frequency bands compared to healthy controls, while the opposite was found in fast frequency bands. These findings underscore the potential of MFE in effectively distinguishing AD patients from healthy individuals, marking a significant advance towards more objective and reliable AD diagnosis strategies.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Entropy analysis of the EEG background activity in Alzheimer's disease patients [J].
Abásolo, D ;
Hornero, R ;
Espino, P ;
Alvarez, D ;
Poza, J .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (03) :241-253
[2]   The k-means Algorithm: A Comprehensive Survey and Performance Evaluation [J].
Ahmed, Mohiuddin ;
Seraj, Raihan ;
Islam, Syed Mohammed Shamsul .
ELECTRONICS, 2020, 9 (08) :1-12
[3]   Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI) [J].
Arevalo-Rodriguez, Ingrid ;
Smailagic, Nadja ;
Roque-Figuls, Marta ;
Ciapponi, Agustin ;
Sanchez-Perez, Erick ;
Giannakou, Antri ;
Pedraza, Olga L. ;
Cosp, Xavier Bonfill ;
Cullum, Sarah .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2021, (07)
[4]   Visual and haptic feedback in detecting motor imagery within a wearable brain-computer interface [J].
Arpaia, Pasquale ;
Coyle, Damien ;
Donnarumma, Francesco ;
Esposito, Antonio ;
Natalizio, Angela ;
Parvis, Marco .
MEASUREMENT, 2023, 206
[5]   Assessment and Scientific Progresses in the Analysis of Olfactory Evoked Potentials [J].
Arpaia, Pasquale ;
Cataldo, Andrea ;
Criscuolo, Sabatina ;
De Benedetto, Egidio ;
Masciullo, Antonio ;
Schiavoni, Raissa .
BIOENGINEERING-BASEL, 2022, 9 (06)
[6]   Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring [J].
Arpaia, Pasquale ;
De Benedetto, Egidio ;
Duraccio, Luigi .
MEASUREMENT, 2021, 177
[7]   Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study [J].
Babiloni, C ;
Binetti, G ;
Cassetta, E ;
Cerboneschi, D ;
Dal Forno, G ;
Del Percio, C ;
Ferreri, F ;
Ferri, R ;
Lanuzza, B ;
Miniussi, C ;
Moretti, DV ;
Nobili, F ;
Pascual-Marqui, RD ;
Rodriguez, G ;
Romani, GL ;
Salinari, S ;
Tecchio, F ;
Vitali, P ;
Zanetti, O ;
Zappasodi, F ;
Rossini, PM .
NEUROIMAGE, 2004, 22 (01) :57-67
[8]   Diagnostic value of quantitative EEG in Alzheimer's disease [J].
Bennys, K ;
Rondouin, G ;
Vergnes, C ;
Touchon, J .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2001, 31 (03) :153-160
[9]   A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis [J].
Beyrami, Seyede Marziyeh Ghoreshi ;
Ghaderyan, Peyvand .
MEASUREMENT, 2020, 156
[10]   Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation [J].
Cao, Zehong ;
Lin, Chin-Teng .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) :1032-1035