Combining crystal plasticity and phase field model for predicting texture evolution and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys

被引:17
作者
Roy, Arunabha M. [1 ]
Ganesan, Sriram [2 ]
Acar, Pinar [3 ]
Arroyave, Raymundo [1 ,4 ]
Sundararaghavan, V. [2 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, 3003 TAMU, College Stn, TX 77843 USA
[2] Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA
[3] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[4] Texas A&M Univ, Dept Mech Engn, 3003 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Static recrystallization; Crystal plasticity; Orientation distribution function; Phase field; Texture and microstructure evolution; Avrami kinetics; MICROSTRUCTURE-SENSITIVE DESIGN; FATIGUE NUCLEATION MODELS; 2-PHASE TITANIUM-ALLOYS; DYNAMIC RECRYSTALLIZATION; STATIC RECRYSTALLIZATION; DISLOCATION DENSITY; GRAIN-GROWTH; STOCHASTIC DESIGN; CELLULAR-AUTOMATA; SUBGRAIN GROWTH;
D O I
10.1016/j.actamat.2023.119645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A three-dimensional computational framework has been developed combining a crystal plasticity (CP) and a phase -field (PF) approach that can efficiently simulate static recrystallization (SRX) and grain growth during the hot -forming in Ti -alloys. In the framework, the CP slip system parameters have been accurately calibrated by solving an inverse optimization problem from available experimental tension and compression stress-strain data through CP simulations performed via an orientation distribution function (ODF)-based computational model. Using the CP model, the evolution of inhomogeneous local deformation, deformed texture, and grain dislocation density have been simulated in the plastically deformed polycrystalline Ti -alloys. The PF model then predicts microstructure evolution and kinetics of SRX from CP-informed dislocation density during the annealing phase. Experimental information on microstructural heterogeneity in terms of the initial arrangement of nuclei distribution has been used to guide the development of the framework that can provide deeper insights into unique morphological evolution for various types of grain impingement as well as experimental validation of SRX kinetics. Finally, when the proposed model has been quantitatively validated through experimentally measured texture evolution and SRX path kinetics, excellent agreement is achieved. The current study highlights a systematic modeling framework that is capable of predicting crystallographic texture, microstructural evolution, and kinetics in the course of SRX for a clear understanding of the relationship between the mechanical properties, various microstructural descriptors, and thermo-mechanical process in the regime of material design.
引用
收藏
页数:21
相关论文
共 138 条
[1]   PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science [J].
Aagesen, L. K. ;
Adams, J. F. ;
Allison, J. E. ;
Andrews, W. B. ;
Araullo-Peters, V. ;
Berman, T. ;
Chen, Z. ;
Daly, S. ;
Das, S. ;
DeWitt, S. ;
Ganesan, S. ;
Garikipati, K. ;
Gavini, V. ;
Githens, A. ;
Hedstrom, M. ;
Huang, Z. ;
Jagadish, H. V. ;
Jones, J. W. ;
Luce, J. ;
Marquis, E. A. ;
Misra, A. ;
Montiel, D. ;
Motamarri, P. ;
Murphy, A. D. ;
Natarajan, A. R. ;
Panwar, S. ;
Puchala, B. ;
Qi, L. ;
Rudraraju, S. ;
Sagiyama, K. ;
Solomon, E. L. S. ;
Sundararaghavan, V. ;
Tarcea, G. ;
Teichert, G. H. ;
Thomas, J. C. ;
Thornton, K. ;
Van der Ven, A. ;
Wang, Z. ;
Weymouth, T. ;
Yang, C. .
JOM, 2018, 70 (10) :2298-2314
[2]   Recent progress of uncertainty quantification in small-scale materials science [J].
Acar, Pinar .
PROGRESS IN MATERIALS SCIENCE, 2021, 117
[3]   Machine Learning Reinforced Crystal Plasticity Modeling Under Experimental Uncertainty [J].
Acar, Pinar .
AIAA JOURNAL, 2020, 58 (08) :3569-3576
[4]   Uncertainty Quantification for Ti-7Al Alloy Microstructure with an Inverse Analytical Model (AUQLin) [J].
Acar, Pinar .
MATERIALS, 2019, 12 (11)
[5]   Stochastic Design Optimization of Microstructural Features Using Linear Programming for Robust Design [J].
Acar, Pinar ;
Sundararaghavan, Veera .
AIAA JOURNAL, 2019, 57 (01) :448-455
[6]   Crystal Plasticity Model Calibration for Ti-7Al Alloy with a Multi-fidelity Computational Scheme [J].
Acar, Pinar .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2018, 7 (04) :186-194
[7]   Stochastic Design Optimization of Microstructures with Utilization of a Linear Solver [J].
Acar, Pinar ;
Srivastava, Siddhartha ;
Sundararaghavan, Veera .
AIAA JOURNAL, 2017, 55 (09) :3161-3168
[8]   Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy [J].
Acar, Pinar ;
Ramazani, Ali ;
Sundararaghavan, Veera .
METALS, 2017, 7 (11)
[9]   Uncertainty quantification of microstructural properties due to variability in measured pole figures [J].
Acar, Pinar ;
Sundararaghavan, Veera .
ACTA MATERIALIA, 2017, 124 :100-108
[10]   Microstructure-sensitive design of a compliant beam [J].
Adams, BL ;
Henrie, A ;
Henrie, B ;
Lyon, M ;
Kalidindi, SR ;
Garmestani, H .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (08) :1639-1663