Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater

被引:15
|
作者
Bui, Justin C. [1 ,2 ]
Lucas, Eowyn [3 ,4 ]
Lees, Eric W. [2 ]
Liu, Andrew K. [1 ,2 ]
Atwater, Harry A. [3 ,4 ]
Xiang, Chengxiang [3 ]
Bell, Alexis T. [1 ,2 ]
Weber, Adam Z. [2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Liquid Sunlight Alliance, Berkeley, CA 94720 USA
[3] CALTECH, Liquid Sunlight Alliance, Pasadena, CA 91125 USA
[4] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
关键词
CARBON-DIOXIDE; WATER ELECTROLYSIS; BICARBONATE; CONVERSION; RECOVERY; IMPACT; MODEL; FLOW; ION;
D O I
10.1039/d3ee01606d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide (CO2) must be removed from the atmosphere to mitigate the negative effects of climate change. However, the most scalable methods for removing CO2 from the air require heat from fossilfuel combustion to produce pure CO2 and continuously regenerate the sorbent. Bipolar-membrane electrodialysis (BPM-ED) is a promising technology that uses renewable electricity to dissociate water into acid and base to regenerate bicarbonate-based CO2 capture solutions, such as those used in chemical loops of direct-air-capture (DAC) processes, and in direct-ocean capture (DOC) to promote atmospheric CO2 drawdown via decarbonization of the shallow ocean. In this study, we develop an experimentally validated 1D model for the electrochemical regeneration of CO2 from bicarbonate-based carbon capture solutions and seawater using BPM-ED. For DAC, our experimental and computational results demonstrate that pH swings induced by BPM water dissociation drive the formation of CO2 at the cation-exchange layer|catholyte interface with energy-intensities of less than 150 kJ mol(-1). However, high rates of bubble formation increase energy intensity at current densities 4100 mA cm(-2). Correspondingly, accelerating water dissociation catalysis and enacting bubble removal could enable CO2 recovery at energy intensities <100 kJ mol(-1) and current densities >100 mA cm(-2). For DOC, mass transport limitations associated with low carbon concentrations in oceanwater suggest that DOC is best suited for clean production of acid and base usable in downstream processes. These results provide design principles for industrial-scale CO2 recovery using BPM-ED.
引用
收藏
页码:5076 / 5095
页数:20
相关论文
共 50 条
  • [41] Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air
    Kulkarni, Ambarish R.
    Sholl, David S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (25) : 8631 - 8645
  • [42] Composite hollow fiber membranes for CO2 capture
    Sandru, Marius
    Haukebo, Siv Hustad
    Hagg, May-Britt
    JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (01) : 172 - 186
  • [43] Nanocellulose-based membranes for CO2 capture
    Ansaloni, Luca
    Salas-Gay, Jesus
    Ligi, Simone
    Baschetti, Marco Giacinti
    JOURNAL OF MEMBRANE SCIENCE, 2017, 522 : 216 - 225
  • [44] Supported ionic liquid membranes for CO2 capture
    Luebke, David
    Nulwala, Hunaid
    Wickramanayake, Shan
    Hopkinson, David
    Myers, Christina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] Recent advances in polymeric membranes for CO2 capture
    Yang Han
    W.S.Winston Ho
    ChineseJournalofChemicalEngineering, 2018, 26 (11) : 2238 - 2254
  • [46] Facilitated transport membranes for CO2 separation and capture
    Tong, Zi
    Ho, W. S. Winston
    SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (02) : 156 - 167
  • [47] In silico screening of zeolite membranes for CO2 capture
    Krishna, Rajamani
    van Baten, Jasper M.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 360 (1-2) : 323 - 333
  • [48] Composite hollow fiber membranes for CO2 capture
    Sandru, Marius
    Haukebø, Siv Hustad
    Hägg, May-Britt
    Journal of Membrane Science, 2010, 345 (03) : 172 - 186
  • [49] Recent advances in polymeric membranes for CO2 capture
    Han, Yang
    Ho, W. S. Winston
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2238 - 2254
  • [50] Polymer Blends for Improved CO2 Capture Membranes
    Zare, Alireza
    Perna, Lorenza
    Nogalska, Adrianna
    Ambrogi, Veronica
    Cerruti, Pierfrancesco
    Tylkowski, Bartosz
    Garcia-Valls, Ricard
    Giamberini, Marta
    POLYMERS, 2019, 11 (10)