Aliasing Backdoor Attacks on Pre-trained Models

被引:0
|
作者
Wei, Cheng'an [1 ,2 ]
Lee, Yeonjoon [3 ]
Chen, Kai [1 ,2 ]
Meng, Guozhu [1 ,2 ]
Lv, Peizhuo [1 ,2 ]
机构
[1] Chinese Acad Sci, SKLOIS, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Hanyang Univ, Ansan, South Korea
基金
国家重点研发计划; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pre-trained deep learning models are widely used to train accurate models with limited data in a short time. To reduce computational costs, pre-trained neural networks often employ subsampling operations. However, recent studies have shown that these subsampling operations can cause aliasing issues, resulting in problems with generalization. Despite this knowledge, there is still a lack of research on the relationship between the aliasing of neural networks and security threats, such as adversarial attacks and backdoor attacks, which manipulate model predictions without the awareness of victims. In this paper, we propose the aliasing backdoor, a low-cost and data-free attack that threatens mainstream pre-trained models and transfers to all student models fine-tuned from them. The key idea is to create an aliasing error in the strided layers of the network and manipulate a benign input to a targeted intermediate representation. To evaluate the attack, we conduct experiments on image classification, face recognition, and speech recognition tasks. The results show that our approach can effectively attack mainstream models with a success rate of over 95%. Our research, based on the aliasing error caused by subsampling, reveals a fundamental security weakness of strided layers, which are widely used in modern neural network architectures. To the best of our knowledge, this is the first work to exploit the strided layers to launch backdoor attacks.
引用
收藏
页码:2707 / 2724
页数:18
相关论文
共 50 条
  • [31] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [32] Interpreting Art by Leveraging Pre-Trained Models
    Penzel, Niklas
    Denzler, Joachim
    2023 18TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, MVA, 2023,
  • [33] Lottery Jackpots Exist in Pre-Trained Models
    Zhang, Yuxin
    Lin, Mingbao
    Zhong, Yunshan
    Chao, Fei
    Ji, Rongrong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14990 - 15004
  • [34] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [35] Generalization of vision pre-trained models for histopathology
    Sikaroudi, Milad
    Hosseini, Maryam
    Gonzalez, Ricardo
    Rahnamayan, Shahryar
    Tizhoosh, H. R.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [37] Learning to Modulate pre-trained Models in RL
    Schmied, Thomas
    Hofmarcher, Markus
    Paischer, Fabian
    Pascanu, Razvan
    Hochreiter, Sepp
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] Deciphering Stereotypes in Pre-Trained Language Models
    Ma, Weicheng
    Scheible, Henry
    Wang, Brian
    Veeramachaneni, Goutham
    Chowdhary, Pratim
    Sung, Alan
    Koulogeorge, Andrew
    Wang, Lili
    Yang, Diyi
    Vosoughi, Soroush
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 11328 - 11345
  • [39] Natural Attack for Pre-trained Models of Code
    Yang, Zhou
    Shi, Jieke
    He, Junda
    Lo, David
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 1482 - 1493
  • [40] Generalization of vision pre-trained models for histopathology
    Milad Sikaroudi
    Maryam Hosseini
    Ricardo Gonzalez
    Shahryar Rahnamayan
    H. R. Tizhoosh
    Scientific Reports, 13