Efficient numerical simulation of fractional-order Van der Pol impulsive system

被引:2
|
作者
Sharifi, Z. [1 ]
Moghaddam, B. P. [1 ]
Ilie, M. [2 ]
机构
[1] Lahijan BranchIslam Azad Univ, Dept Math, Lahijan, Iran
[2] Rasht BranchIslam Azad Univ, Dept Math, Rasht, Iran
来源
关键词
Fractional calculus; fractional Van der Pol impulsive system; finite difference technique; impulsive treatment effects; DIFFERENTIAL-EQUATIONS; MODELS;
D O I
10.1142/S0129183124500360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an innovative and efficient method for solving the fractional-order Van der Pol impulsive system. In particular, the proposed scheme utilizes finite difference techniques for approximating fractional integrals, and its efficacy is compared to existing integration methods presented in the literature. Moreover, the proposed approach is applied to fractional impulsive systems, specifically the Fractional Van der Pol system with impulse behavior. The results demonstrate the effectiveness of the impulsive treatment effects for the system under consideration. In general, this study offers an insightful contribution to the field of fractional calculus, while providing a practical and efficient solution for solving impulsive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Numerical simulation of the fractional-order control system
    Cai X.
    Liu F.
    J. Appl. Math. Comp., 2007, 1-2 (229-241): : 229 - 241
  • [22] NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM
    Cai, X.
    Liu, F.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 23 (1-2) : 229 - 241
  • [23] Study of fractional order Van der Pol equation
    Mishra, V
    Das, S.
    Jafari, H.
    Ong, S. H.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 55 - 60
  • [24] Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 84 : 130 - 138
  • [25] Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method
    李素娟
    牛江川
    李向红
    Chinese Physics B, 2018, 27 (12) : 215 - 220
  • [26] Initial conditions-independent limit cycles of a fractional-order van der Pol oscillator
    Liu, Q. X.
    Liu, J. K.
    Chen, Y. M.
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (08) : 2135 - 2146
  • [27] Chaos in a modified van der Pol system and in its fractional order systenis
    Ge, Zheng-Ming
    Zhang, An-Ray
    CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1791 - 1822
  • [28] Stabilizing Periodic Orbits of The Fractional Order Chaotic Van Der Pol System
    Rahimi, Mohammad A.
    Salarieh, Hasan
    Alasty, Aria
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 8, PTS A AND B, 2012, : 175 - 183
  • [29] Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system
    Ray, S. Saha
    Patra, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 659 - 667
  • [30] Numerical solution to the van der Pol equation with fractional damping
    Konuralp, Ali
    Konuralp, Cigdem
    Yildirim, Ahmet
    PHYSICA SCRIPTA, 2009, T136