Efficient numerical simulation of fractional-order Van der Pol impulsive system

被引:2
|
作者
Sharifi, Z. [1 ]
Moghaddam, B. P. [1 ]
Ilie, M. [2 ]
机构
[1] Lahijan BranchIslam Azad Univ, Dept Math, Lahijan, Iran
[2] Rasht BranchIslam Azad Univ, Dept Math, Rasht, Iran
来源
关键词
Fractional calculus; fractional Van der Pol impulsive system; finite difference technique; impulsive treatment effects; DIFFERENTIAL-EQUATIONS; MODELS;
D O I
10.1142/S0129183124500360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an innovative and efficient method for solving the fractional-order Van der Pol impulsive system. In particular, the proposed scheme utilizes finite difference techniques for approximating fractional integrals, and its efficacy is compared to existing integration methods presented in the literature. Moreover, the proposed approach is applied to fractional impulsive systems, specifically the Fractional Van der Pol system with impulse behavior. The results demonstrate the effectiveness of the impulsive treatment effects for the system under consideration. In general, this study offers an insightful contribution to the field of fractional calculus, while providing a practical and efficient solution for solving impulsive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hopf Bifurcations of a Stochastic Fractional-Order Van der Pol System
    Liu, Xiaojun
    Hong, Ling
    Yang, Lixin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [3] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Shankar Rao Munjam
    Rajeswari Seshadri
    Nonlinear Dynamics, 2019, 95 : 2837 - 2854
  • [4] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Munjam, Shankar Rao
    Seshadri, Rajeswari
    NONLINEAR DYNAMICS, 2019, 95 (04) : 2837 - 2854
  • [5] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [6] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [7] Stochastic response of fractional-order van der Pol oscillator
    Chen, Lincong
    Zhu, Weiqiu
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (01)
  • [8] Primary resonance of fractional-order van der Pol oscillator
    Shen, Yong-Jun
    Wei, Peng
    Yang, Shao-Pu
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1629 - 1642
  • [9] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78
  • [10] Primary resonance of fractional-order van der Pol oscillator
    Yong-Jun Shen
    Peng Wei
    Shao-Pu Yang
    Nonlinear Dynamics, 2014, 77 : 1629 - 1642