Open the box of digital neuromorphic processor: Towards effective algorithm-hardware co-design

被引:3
|
作者
Tang, Guangzhi [1 ]
Safa, Ali [2 ,3 ]
Shidqi, Kevin [1 ]
Detterer, Paul [1 ]
Traferro, Stefano [1 ]
Konijnenburg, Mario [1 ]
Sifalakis, Manolis [1 ]
van Schaik, Gert-Jan [1 ]
Yousefzadeh, Amirreza [1 ]
机构
[1] Imec Netherlands, Eindhoven, Netherlands
[2] IMEC, Leuven, Belgium
[3] Katholieke Univ Leuven, Leuven, Belgium
来源
2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS | 2023年
关键词
NETWORK;
D O I
10.1109/ISCAS46773.2023.10181505
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse and event-driven spiking neural network (SNN) algorithms are the ideal candidate solution for energy-efficient edge computing. Yet, with the growing complexity of SNN algorithms, it isn't easy to properly benchmark and optimize their computational cost without hardware in the loop. Although digital neuromorphic processors have been widely adopted to benchmark SNN algorithms, their black-box nature is problematic for algorithm-hardware co-optimization. In this work, we open the black box of the digital neuromorphic processor for algorithm designers by presenting the neuron processing instruction set and detailed energy consumption of the SENeCA neuromorphic architecture. For convenient benchmarking and optimization, we provide the energy cost of the essential neuromorphic components in SENeCA, including neuron models and learning rules. Moreover, we exploit the SENeCA's hierarchical memory and exhibit an advantage over existing neuromorphic processors. We show the energy efficiency of SNN algorithms for video processing and online learning, and demonstrate the potential of our work for optimizing algorithm designs. Overall, we present a practical approach to enable algorithm designers to accurately benchmark SNN algorithms and pave the way towards effective algorithm-hardware co-design.
引用
收藏
页数:5
相关论文
共 2 条
  • [1] Towards neuromorphic brain-computer interfaces: Model and circuit Co-design of the spiking EEGNet
    Feng, Lichen
    Shan, Hongwei
    Fan, Zhouhua
    Zhang, Yueqi
    Yang, Liying
    Zhu, Zhangming
    MICROELECTRONICS JOURNAL, 2023, 137
  • [2] A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications
    Raghunathan, Shriram
    Gupta, Sumeet L.
    Markandeya, Himanshu S.
    Roy, Kaushik
    Irazoqui, Pedro P.
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 193 (01) : 106 - 117