Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression

被引:9
|
作者
Jiang, Han-Kai [1 ,2 ,3 ,4 ]
Ambrose, Nicole L. [1 ]
Chung, Christina Z. [1 ]
Wang, Yane-Shih [2 ,3 ,5 ]
Soll, Dieter [1 ,6 ]
Tharp, Jeffery M. [7 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA
[2] Acad Sinica, Inst Biol Chem, Taipei 11529, Taiwan
[3] Acad Sinica, Chem Biol & Mol Biophys Program, Taiwan Int Grad Program, Taipei 11529, Taiwan
[4] Natl Tsing Hua Univ, Dept Chem, Hsinchu, Taiwan
[5] Natl Taiwan Univ, Inst Biochem Sci, Taipei 10617, Taiwan
[6] Yale Univ, Dept Chem, New Haven, CT 06511 USA
[7] Indiana Univ Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
关键词
genetic code expansion; stop codon suppression; noncanonical amino acids; pyrrolysyl-tRNA synthetase; synthetic biology; GENE-EXPRESSION; IN-VITRO; PROTEIN; EVOLUTION; DESIGN; REPLICATION; POLYMERASE; GENERATION; PRINCIPLES; ORGANISMS;
D O I
10.1073/pnas.2219758120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic biology tools for regulating gene expression have many useful biotechnology and therapeutic applications. Most tools developed for this purpose control gene expres-sion at the level of transcription, and relatively few methods are available for regulating gene expression at the translational level. Here, we design and engineer split orthogonal aminoacyl-tRNA synthetases (o-aaRS) as unique tools to control gene translation in bacteria and mammalian cells. Using chemically induced dimerization domains, we developed split o-aaRSs that mediate gene expression by conditionally suppressing stop codons in the presence of the small molecules rapamycin and abscisic acid. By activating o-aaRSs, these molecular switches induce stop codon suppression, and in their absence stop codon suppression is turned off. We demonstrate, in Escherichia coli and in human cells, that split o-aaRSs function as genetically encoded AND gates where stop codon suppression is controlled by two distinct molecular inputs. In addition, we show that split o-aaRSs can be used as versatile biosensors to detect therapeutically relevant pro-tein-protein interactions, including those involved in cancer, and those that mediate severe acute respiratory syndrome-coronavirus-2 infection.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Mitochondrial aminoacyl-tRNA synthetases trigger unique compensatory mechanisms in neurons
    Podmanicky, Oliver
    Gao, Fei
    Munro, Benjamin
    Jennings, Matthew J.
    Boczonadi, Veronika
    Hathazi, Denisa
    Mueller, Juliane S.
    Horvath, Rita
    HUMAN MOLECULAR GENETICS, 2024, 33 (05) : 435 - 447
  • [22] Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer
    Wang, Justin
    Vallee, Ingrid
    Dutta, Aditi
    Wang, Yu
    Mo, Zhongying
    Liu, Ze
    Cui, Haissi
    Su, Andrew I.
    Yang, Xiang-Lei
    GENES, 2020, 11 (11) : 1 - 22
  • [23] Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World
    Jakubowski, Hieronim
    FEBS LETTERS, 2016, 590 (04) : 469 - 481
  • [24] Exploring the Substrate Range of Wild-Type Aminoacyl-tRNA Synthetases
    Fan, Chenguang
    Ho, Joanne M. L.
    Chirathivat, Napon
    Soell, Dieter
    Wang, Yane-Shih
    CHEMBIOCHEM, 2014, 15 (12) : 1805 - 1809
  • [25] Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells
    Debard, Sylvain
    Bader, Gaetan
    De Craene, Johan-Owen
    Enkler, Ludovic
    Bar, Severine
    Laporte, Daphne
    Hammann, Philippe
    Myslinski, Evelyne
    Senger, Bruno
    Friant, Sylvie
    Becker, Hubert Dominique
    METHODS, 2017, 113 : 91 - 104
  • [26] Synthetic Microcin C Analogs Targeting Different Aminoacyl-tRNA Synthetases
    Van de Vijver, Pieter
    Vondenhoff, Gaston H. M.
    Kazakov, Teymur S.
    Semenova, Ekaterina
    Kuznedelov, Konstantin
    Metlitskaya, Anastasia
    Van Aerschot, Arthur
    Severinov, Konstantin
    JOURNAL OF BACTERIOLOGY, 2009, 191 (20) : 6273 - 6280
  • [27] Synthesis of Glu-tRNAGln by Engineered and Natural Aminoacyl-tRNA Synthetases
    Rodriguez-Hernandez, Annia
    Bhaskaran, Hari
    Hadd, Andrew
    Perona, John J.
    BIOCHEMISTRY, 2010, 49 (31) : 6727 - 6736
  • [28] Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
    Melnikov, Sergey V.
    Soll, Dieter
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
  • [29] Recoding Aminoacyl-tRNA Synthetases for Synthetic Biology by Rational Protein-RNA Engineering
    Hadd, Andrew
    Perona, John J.
    ACS CHEMICAL BIOLOGY, 2014, 9 (12) : 2761 - 2766
  • [30] Growth Rates and Specific Aminoacyl-tRNA Synthetases Activities in Clupea harengus Larvae
    Herrera, Inma
    Yebra, Lidia
    Santana-del-Pino, Angelo
    Hernandez-Leon, Santiago
    OCEANS-SWITZERLAND, 2024, 5 (04): : 951 - 964