Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation

被引:3
作者
Wu, Xue-Sha [1 ]
Zhang, Hao-Miao [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Polynomial function method; Fluid mechanics; Lump-soliton solution; Lump-periodic solution; LUMP SOLUTIONS;
D O I
10.1016/j.rinp.2023.106670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we research a (2+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. The lump, lump-soliton and lump-periodic solutions are derived based on the variable-coefficient polynomial function method. The effect of variable coefficients on the amplitude and velocity of solitons is analyzed and shown by some 3D graphs, contour plots and density graphs.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Lump solutions to the Kadomtsev-Petviashvili equation [J].
Ma, Wen-Xiu .
PHYSICS LETTERS A, 2015, 379 (36) :1975-1978
[32]   Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation [J].
Jian-Guo Liu ;
Mostafa Eslami ;
Hadi Rezazadeh ;
Mohammad Mirzazadeh .
Nonlinear Dynamics, 2019, 95 :1027-1033
[33]   Dynamics and Exact Solutions of the Kadomtsev-Petviashvili Equation [J].
Kushner, A. G. ;
Tao, Sinian .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) :4679-4685
[34]   Kadomtsev-Petviashvili equation on the half-plane [J].
Gudkova, EV ;
Habibullin, IT .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 140 (02) :1086-1094
[35]   New interaction solutions of the Kadomtsev-Petviashvili equation [J].
Liu Xi-Zhong ;
Yu Jun ;
Ren Bo ;
Yang Jian-Rong .
CHINESE PHYSICS B, 2014, 23 (10)
[36]   Whitham modulation theory for the Kadomtsev-Petviashvili equation [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Wang, Qiao .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2204)
[37]   ON THE PROPAGATION OF REGULARITY OF SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
Isaza, Pedro ;
Linares, Felipe ;
Ponce, Gustavo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :1006-1024
[38]   Extended Direct Method and New Similarity Solutions of Kadomtsev-Petviashvili Equation [J].
Zhao, Baoqin ;
Liu, Shaowei .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (09) :2045-2065
[39]   Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics [J].
Lan, Zhongzhou .
APPLIED MATHEMATICS LETTERS, 2019, 94 :126-132
[40]   Kadomtsev-Petviashvili equation: One-constraint method and lump pattern [J].
Dong, Jieyang ;
Ling, Liming ;
Zhang, Xiaoen .
PHYSICA D-NONLINEAR PHENOMENA, 2022, 432