Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation

被引:3
作者
Wu, Xue-Sha [1 ]
Zhang, Hao-Miao [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Polynomial function method; Fluid mechanics; Lump-soliton solution; Lump-periodic solution; LUMP SOLUTIONS;
D O I
10.1016/j.rinp.2023.106670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we research a (2+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. The lump, lump-soliton and lump-periodic solutions are derived based on the variable-coefficient polynomial function method. The effect of variable coefficients on the amplitude and velocity of solitons is analyzed and shown by some 3D graphs, contour plots and density graphs.
引用
收藏
页数:7
相关论文
共 50 条
[21]   CTE method and interaction solutions for the Kadomtsev-Petviashvili equation [J].
Ren, Bo .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (04) :333-338
[22]   On the generalized Kadomtsev-Petviashvili equation with generalized evolution and variable coefficients [J].
Esfahani, Amin .
PHYSICS LETTERS A, 2010, 374 (35) :3635-3645
[23]   CTE method and interaction solutions for the Kadomtsev-Petviashvili equation [J].
Bo Ren .
Journal of the Korean Physical Society, 2017, 70 :333-338
[24]   The generalized Kadomtsev-Petviashvili equation I [J].
Schleinkofer, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (02) :1245-1249
[25]   Remarks on the solutions of the Kadomtsev-Petviashvili equation [J].
Han, WT ;
Li, YH .
PHYSICS LETTERS A, 2001, 283 (3-4) :185-194
[26]   ON SOLUTIONS FOR THE KADOMTSEV-PETVIASHVILI I EQUATION [J].
Colliander, J. ;
Kenig, C. ;
Staffilani, G. .
MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (04) :491-520
[27]   Stripe solitons and lump solutions for a generalized Kadomtsev-Petviashvili equation with variable coefficients in fluid mechanics [J].
Liu, Jian-Guo ;
Ye, Qing .
NONLINEAR DYNAMICS, 2019, 96 (01) :23-29
[28]   A splitting approach for the Kadomtsev-Petviashvili equation [J].
Einkemmer, Lukas ;
Ostermann, Alexander .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 :716-730
[29]   Solitons and Backlund transformation for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics [J].
Lan, Zhong-Zhou ;
Gao, Yi-Tian ;
Yang, Jin-Wei ;
Su, Chuan-Qi ;
Zhao, Chen ;
Gao, Zhe .
APPLIED MATHEMATICS LETTERS, 2016, 60 :96-100
[30]   Multisoliton excitations for the Kadomtsev-Petviashvili equation [J].
Ma, ZY ;
Hua, GS ;
Zheng, CL .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2) :32-38