Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation

被引:3
|
作者
Wu, Xue-Sha [1 ]
Zhang, Hao-Miao [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Polynomial function method; Fluid mechanics; Lump-soliton solution; Lump-periodic solution; LUMP SOLUTIONS;
D O I
10.1016/j.rinp.2023.106670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we research a (2+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. The lump, lump-soliton and lump-periodic solutions are derived based on the variable-coefficient polynomial function method. The effect of variable coefficients on the amplitude and velocity of solitons is analyzed and shown by some 3D graphs, contour plots and density graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Various exact analytical solutions of a variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Zhu, Wen-Hui
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2739 - 2751
  • [2] Nonautonomous lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Wang, Yun-Hu
    APPLIED MATHEMATICS LETTERS, 2021, 119
  • [3] Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation
    Ilhan, Onur Alp
    Manafian, Jalil
    Shahriari, Mohammad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2429 - 2448
  • [4] Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics
    Wu, Xiao-Yu
    Tian, Bo
    Liu, Lei
    Sun, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 215 - 223
  • [5] Interaction solutions of a variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources
    Yuan, Na
    Liu, Jian-Guo
    Seadawy, Aly R.
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (05) : 787 - 795
  • [6] Breather wave solutions for the Kadomtsev-Petviashvili equation with variable coefficients in a fluid based on the variable-coefficient three-wave approach
    Liu, Jian-Guo
    Zhu, Wen-Hui
    Zhou, Li
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 458 - 465
  • [7] Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Eslami, Mostafa
    Rezazadeh, Hadi
    Mirzazadeh, Mohammad
    NONLINEAR DYNAMICS, 2019, 95 (02) : 1027 - 1033
  • [8] Various exact analytical solutions of a variable-coefficient Kadomtsev–Petviashvili equation
    Jian-Guo Liu
    Wen-Hui Zhu
    Nonlinear Dynamics, 2020, 100 : 2739 - 2751
  • [9] Dynamics investigation on a Kadomtsev-Petviashvili equation with variable coefficients
    Peng, Li-Juan
    OPEN PHYSICS, 2022, 20 (01): : 1041 - 1047
  • [10] Lumps and rouge waves for a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics
    Yin, Ying
    Tian, Bo
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Du, Zhong
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (03):