Micro-nodule analysis by severity of pneumoconiosis using 3D CT images

被引:1
作者
Hahsimoto, Y. [1 ]
Matsuhiro, M. [2 ]
Suzuki, H. [1 ]
Kawata, Y. [1 ]
Ohtsuka, Y. [3 ]
Kishimoto, T. [4 ]
Ashizawa, K. [5 ]
Niki, N. [6 ]
机构
[1] Tokushima Univ, Tokushima, Japan
[2] Suzuka Univ Med Sci, Suzuka, Japan
[3] Hokkaido Chuo Rosai Hosp, Iwamizawa, Hokkaido, Japan
[4] Okayama Rosai Hosp, Okayama, Japan
[5] Nagasaki Univ, Nagasaki, Japan
[6] Med Sci Inst Inc, Tokushima, Japan
来源
MEDICAL IMAGING 2023 | 2023年 / 12469卷
关键词
pneumoconiosis; micro nodule; computed tomography; quantitative diagnostic criteria;
D O I
10.1117/12.2653766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pneumoconiosis is an occupational respiratory disease caused by inhaling dust into the lungs. In Japan, 240,000 people undergo pneumoconiosis screening every year. X-rays are used worldwide to classify the severity of pneumoconiosis. It is important to distinguish between type 0/1 and type 1/0, which are eligible for recognition of occupational injury. CT images are expected to provide more accurate diagnosis because they can be confirmed in three dimensions compared to X-rays. We extract micro-nodules from 3D CT images for each severity of pneumoconiosis, and analyze and evaluate the number, size, position and CT values of micro-nodules in each lung lobe.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Micro-CT as a novel technique for 3D reconstruction of molluscan anatomy
    Golding, Rosemary E.
    Jones, Allan S.
    MOLLUSCAN RESEARCH, 2007, 27 (03) : 123 - 128
  • [42] Quantitative 3D Micro-CT Imaging of Human Lung Tissue
    Kampschulte, M.
    Schneider, C. R.
    Litzlbauer, H. D.
    Tscholl, D.
    Schneider, C.
    Zeiner, C.
    Krombach, G. A.
    Ritman, E. L.
    Bohle, R. M.
    Langheinrich, A. C.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2013, 185 (09): : 869 - 876
  • [43] The Gap in the Thickness: Estimating Effectiveness of Pulmonary Nodule Detection in Thick- and Thin-Section CT Images with 3D Deep Neural Networks
    Guo, Quan
    Wang, Chengdi
    Guo, Jixiang
    Bai, Hongli
    Xu, Xiuyuan
    Yang, Lan
    Wang, Jianyong
    Chen, Nan
    Wang, Zihuai
    Gan, Yuncui
    Liu, Lunxu
    Li, Weimin
    Yi, Zhang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 229
  • [44] An Effective CNN Approach for Vertebrae Segmentation from 3D CT Images
    Kuok, Chan-Pang
    Hsue, Jin-Yuan
    Shen, Ting-Li
    Huang, Bing-Feng
    Chen, Chi-Yeh
    Sun, Yung-Nien
    PROCEEDINGS OF THE 2018 PACIFIC NEIGHBORHOOD CONSORTIUM ANNUAL CONFERENCE AND JOINT MEETINGS (PNC) - HUMAN RIGHTS IN CYBERSPACE, 2018, : 7 - 12
  • [45] Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs
    Bissinger, Oliver
    Probst, Florian Andreas
    Wolff, Klaus-Dietrich
    Jeschke, Anke
    Weitz, Jochen
    Deppe, Herbert
    Kolk, Andreas
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2017, 44 (04) : 418 - 427
  • [46] 3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction
    Hegazy, Mohamed A. A.
    Cho, Myung Hye
    Cho, Min Hyoung
    Lee, Soo Yeol
    SENSORS, 2024, 24 (06)
  • [47] Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques
    Wang, Zi
    Verboven, Pieter
    Nicolai, Bart
    PLANT METHODS, 2017, 13
  • [48] Automatic Cerebrospinal Fluid Segmentation in Non-Contrast CT Images Using a 3D Convolutional Network
    Patel, Ajay
    van de Leemput, Sil C.
    Prokop, Mathias
    van Ginneken, Bram
    Manniesing, Rashindra
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [49] High-resolution micro-CT with 3D image analysis for porosity characterization of historic bricks
    Reedy, Chandra L.
    Reedy, Cara L.
    HERITAGE SCIENCE, 2022, 10 (01)
  • [50] 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis
    Ogata, Yuji
    Nakahara, Tadaki
    Ode, Kenichi
    Matsusaka, Yohji
    Katagiri, Mari
    Iwabuchi, Yu
    Itoh, Kazunari
    Ichimura, Akira
    Jinzaki, Masahiro
    ANNALS OF NUCLEAR MEDICINE, 2017, 31 (04) : 304 - 314