Micro-nodule analysis by severity of pneumoconiosis using 3D CT images

被引:1
作者
Hahsimoto, Y. [1 ]
Matsuhiro, M. [2 ]
Suzuki, H. [1 ]
Kawata, Y. [1 ]
Ohtsuka, Y. [3 ]
Kishimoto, T. [4 ]
Ashizawa, K. [5 ]
Niki, N. [6 ]
机构
[1] Tokushima Univ, Tokushima, Japan
[2] Suzuka Univ Med Sci, Suzuka, Japan
[3] Hokkaido Chuo Rosai Hosp, Iwamizawa, Hokkaido, Japan
[4] Okayama Rosai Hosp, Okayama, Japan
[5] Nagasaki Univ, Nagasaki, Japan
[6] Med Sci Inst Inc, Tokushima, Japan
来源
MEDICAL IMAGING 2023 | 2023年 / 12469卷
关键词
pneumoconiosis; micro nodule; computed tomography; quantitative diagnostic criteria;
D O I
10.1117/12.2653766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pneumoconiosis is an occupational respiratory disease caused by inhaling dust into the lungs. In Japan, 240,000 people undergo pneumoconiosis screening every year. X-rays are used worldwide to classify the severity of pneumoconiosis. It is important to distinguish between type 0/1 and type 1/0, which are eligible for recognition of occupational injury. CT images are expected to provide more accurate diagnosis because they can be confirmed in three dimensions compared to X-rays. We extract micro-nodules from 3D CT images for each severity of pneumoconiosis, and analyze and evaluate the number, size, position and CT values of micro-nodules in each lung lobe.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Linear Accuracy of Cone Beam CT Derived 3D Images
    Brown, April A.
    Scarfe, William C.
    Scheetz, James P.
    Silveira, Anibal M.
    Farman, Allan G.
    ANGLE ORTHODONTIST, 2009, 79 (01) : 150 - 157
  • [32] An integrative framework for 3D cobb angle measurement on CT images
    Huo, Xing
    Tan, Jie Qing
    Qian, Jun
    Cheng, Li
    Jing, Jue Hua
    Shao, Kun
    Li, Bing Nan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 : 111 - 118
  • [33] 3D micro CT imaging of the human peripheral nerve fascicle
    Yan, Liwei
    Qi, Jian
    Zhu, Shuang
    Lin, Tao
    Zhou, Xiang
    Liu, Xiaolin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10315 - 10323
  • [34] Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics
    Guo, Yixian
    Song, Qiong
    Jiang, Mengmeng
    Guo, Yinglong
    Xu, Peng
    Zhang, Yiqian
    Fu, Chi-Cheng
    Fang, Qu
    Zeng, Mengsu
    Yao, Xiuzhong
    ACADEMIC RADIOLOGY, 2021, 28 (09) : E258 - E266
  • [35] High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis
    Willekens, Inneke
    Van de Casteele, Elke
    Buls, Nico
    Temmermans, Frederik
    Jansen, Bart
    Deklerck, Rudi
    de Mey, Johan
    BMC CANCER, 2014, 14
  • [36] Current developments and applications of micro-CT for the 3D analysis of multiphase mineral systems in geometallurgy
    Wang, Y.
    Miller, J. D.
    EARTH-SCIENCE REVIEWS, 2020, 211
  • [37] Kidney Segmentation in 3D CT Images Using B-Spline Explicit Active Surfaces
    Torres, Helena R.
    Oliveira, Bruno
    Queiros, Sandro
    Morais, Pedro
    Fonseca, Jaime C.
    D'hooge, Jan
    Rodrigues, Nuno F.
    Vilaca, Joao L.
    2016 IEEE INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH, 2016,
  • [38] Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts
    Lund, PE
    Naessens, LC
    Seaman, CA
    Reyes, DA
    Ritman, EL
    MEDICAL IMAGING 2000: PHYSIOLOGY AND FUNCTION FORM MULTIDIMENSIONAL IMAGES, 2000, 3978 : 314 - 319
  • [39] Investigation on the validity of 3D micro-CT imaging in the fish brain
    Udagawa, Shingo
    Miyara, Keitaro
    Takekata, Hiroki
    Takeuchi, Yuki
    Takemura, Akihiro
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 328
  • [40] Visualization of 3D osteon morphology by synchrotron radiation micro-CT
    Cooper, D. M. L.
    Erickson, B.
    Peele, A. G.
    Hannah, K.
    Thomas, C. D. L.
    Clement, J. G.
    JOURNAL OF ANATOMY, 2011, 219 (04) : 481 - 489