Micro-nodule analysis by severity of pneumoconiosis using 3D CT images

被引:1
作者
Hahsimoto, Y. [1 ]
Matsuhiro, M. [2 ]
Suzuki, H. [1 ]
Kawata, Y. [1 ]
Ohtsuka, Y. [3 ]
Kishimoto, T. [4 ]
Ashizawa, K. [5 ]
Niki, N. [6 ]
机构
[1] Tokushima Univ, Tokushima, Japan
[2] Suzuka Univ Med Sci, Suzuka, Japan
[3] Hokkaido Chuo Rosai Hosp, Iwamizawa, Hokkaido, Japan
[4] Okayama Rosai Hosp, Okayama, Japan
[5] Nagasaki Univ, Nagasaki, Japan
[6] Med Sci Inst Inc, Tokushima, Japan
来源
MEDICAL IMAGING 2023 | 2023年 / 12469卷
关键词
pneumoconiosis; micro nodule; computed tomography; quantitative diagnostic criteria;
D O I
10.1117/12.2653766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pneumoconiosis is an occupational respiratory disease caused by inhaling dust into the lungs. In Japan, 240,000 people undergo pneumoconiosis screening every year. X-rays are used worldwide to classify the severity of pneumoconiosis. It is important to distinguish between type 0/1 and type 1/0, which are eligible for recognition of occupational injury. CT images are expected to provide more accurate diagnosis because they can be confirmed in three dimensions compared to X-rays. We extract micro-nodules from 3D CT images for each severity of pneumoconiosis, and analyze and evaluate the number, size, position and CT values of micro-nodules in each lung lobe.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
    van Eijnatten, Maureen
    Rundo, Leonardo
    Batenburg, K. Joost
    Lucka, Felix
    Beddowes, Emma
    Caldas, Carlos
    Gallagher, Ferdia A.
    Sala, Evis
    Schonlieb, Carola-Bibiane
    Woitek, Ramona
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [22] Existing and Potential Statistical and Computational Approaches for the Analysis of 3D CT Images of Plant Roots
    Xu, Zheng
    Valdes, Camilo
    Clarke, Jennifer
    AGRONOMY-BASEL, 2018, 8 (05):
  • [23] Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer
    El-Baz, A.
    Gimel'farb, G.
    Falk, R.
    El-Ghar, M. Abo
    PATTERN RECOGNITION, 2009, 42 (06) : 1041 - 1051
  • [24] Denoising Low Dose CT Images via 3D Total Variation Using CUDA
    Mao, Baolin
    Xiao, Dayu
    Xiong, Xin
    Chen, Xiaozhao
    Zhang, Wei
    Kang, Yan
    PROCEEDINGS OF 2013 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE), 2013, : 47 - 50
  • [25] Evaluation of segmentation using lung nodule phantom CT images
    Judy, PF
    Jacobson, FL
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1393 - 1398
  • [26] Identification of pore spaces in 3D CT soil images using PFCM partitional clustering
    Ojeda-Magana, B.
    Quintanilla-Dominguez, J.
    Ruelas, R.
    Tarquis, A. M.
    Gomez-Barba, L.
    Andina, D.
    GEODERMA, 2014, 217 : 90 - 101
  • [27] Segmentation of cortical bone, trabecular bone, and medullary pores from micro-CT images using 2D and 3D deep learning models
    Lee, Andrew H.
    Moore, Julian M.
    Covarrubias, Brandon Vera
    Lynch, Leigha M.
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2025,
  • [28] A combined learning algorithm for prostate segmentation on 3D CT images
    Ma, Ling
    Guo, Rongrong
    Zhang, Guoyi
    Schuster, David M.
    Fei, Baowei
    MEDICAL PHYSICS, 2017, 44 (11) : 5768 - 5781
  • [29] Artefact reduction on CT images of fossils to allow 3D visualisation
    McLean, D
    Robinson, J
    Archer, M
    RADIATION PHYSICS AND CHEMISTRY, 2001, 61 (3-6) : 723 - 724
  • [30] Visual Grounding of Whole Radiology Reports for 3D CT Images
    Ichinose, Akimichi
    Hatsutani, Taro
    Nakamura, Keigo
    Kitamura, Yoshiro
    Iizuka, Satoshi
    Simo-Serra, Edgar
    Kido, Shoji
    Tomiyama, Noriyuki
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT V, 2023, 14224 : 611 - 621