Mapping Paddy Rice Planting Area in Dongting Lake Area Combining Time Series Sentinel-1 and Sentinel-2 Images

被引:11
|
作者
Jiang, Qin [1 ,2 ]
Tang, Zhiguang [1 ,2 ]
Zhou, Linghua [3 ]
Hu, Guojie [4 ]
Deng, Gang [5 ]
Xu, Meifeng [3 ]
Sang, Guoqing [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Natl Local Joint Engn Lab Geospatial Informat Tech, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Earth Sci & Spatial Informat Engn, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Technol, Sch Resource Environm & Safety Engn, Xiangtan 411201, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Lanzhou 730000, Peoples R China
[5] China Univ Geosci Wuhan, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
关键词
paddy rice mapping; Sentinel-1; 2; time series; Google Earth Engine; Dongting lake area; GOOGLE EARTH ENGINE; LANDSAT IMAGES; MULTITEMPORAL MODIS; CROPPING SYSTEMS; SURFACE-WATER; CHINA; ASIA; CLASSIFICATION; AGRICULTURE; FOREST;
D O I
10.3390/rs15112794
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate and timely acquisition of cropping intensity and spatial distribution of paddy rice is not only an important basis for monitoring growth and predicting yields, but also for ensuring food security and optimizing the agricultural production management system of cropland. However, due to the monsoon climate in southern China, it is cloudy and rainy throughout the year, which makes it difficult to obtain accurate information on rice cultivation based on optical time series images. Conventional image synthesis is prone to omission or redundancy of spectral and temporal features that are potentially important for rice-growth identification, making it difficult to determine the optimal features for high-precision mapping of paddy rice. To address these issues, we develop a method to granulate the effective use interval of classification features by extracting phenological signatures of rice to obtain cost-effective and highly accurate mapping results. Two steps are involved in this method: (1) analyzing the information on various features (spectra, polarization, and seasonal regularity) to identify three key phenological periods throughout the lifespan of paddy rice; (2) identifying the features with the highest class separation between paddy rice, non-paddy crops, and wetlands under different phenological stages; and (3) removing redundant features to retain the optimal feature combinations. Subsequently, the obtained feature sets are used as input data for the random forest classifier. The results showed that the overall accuracy of the identified rice results was 95.44% with F1 scores above 93% for both single- and double-cropping rice. Meanwhile, the correlation coefficient of our mapped rice area compared with the official statistics of rice area at county and district levels was 0.86. In addition, we found that combining Sentinel-1 and Sentinel-2 images for rice recognition was better than using Sentinel-1 or Sentinel-2 alone, and the classification accuracy was improved by 5.82% and 2.39%, which confirms that the synergistic Sentinel-1 and Sentinel-2 data can effectively overcome the problem of missing optical images caused by clouds and rain. Our study demonstrates the potential of distinguishing mixed rice-cropping systems in subtropical regions with fragmented rice-field distribution in a cloudy and rainy environment, and also provides a basis for the rational layout of rice production and improvement of cultivation systems.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series
    Song, Yang
    Wang, Jing
    REMOTE SENSING, 2019, 11 (04)
  • [22] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Aziz, Md. Abdullah
    Haldar, Dipanwita
    Danodia, Abhishek
    Chauhan, Prakash
    APPLIED GEOMATICS, 2023, 15 (02) : 407 - 420
  • [23] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Md. Abdullah Aziz
    Dipanwita Haldar
    Abhishek Danodia
    Prakash Chauhan
    Applied Geomatics, 2023, 15 : 407 - 420
  • [24] Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping
    Bioresita, Filsa
    Puissant, Anne
    Stumpf, Andre
    Malet, Jean-Philippe
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 9026 - 9049
  • [25] National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series
    Frantz, David
    Schug, Franz
    Okujeni, Akpona
    Navacchi, Claudio
    Wagner, Wolfgang
    van der Linden, Sebastian
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2021, 252
  • [26] Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
    Chen, Yansi
    Hou, Jinliang
    Huang, Chunlin
    Zhang, Ying
    Li, Xianghua
    REMOTE SENSING, 2021, 13 (15)
  • [27] Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belem, Eastern Brazilian Amazon
    Tavares, Paulo Amador
    Santos Beltrao, Norma Ely
    Guimaraes, Ulisses Silva
    Teodoro, Ana Claudia
    SENSORS, 2019, 19 (05)
  • [28] Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa
    Tanase, Mihai A.
    Belenguer-Plomer, Miguel A.
    Roteta, Ekhi
    Bastarrika, Aitor
    Wheeler, James
    Fernandez-Carrillo, Angel
    Tansey, Kevin
    Wiedemann, Werner
    Navratil, Peter
    Lohberger, Sandra
    Siegert, Florian
    Chuvieco, Emilio
    REMOTE SENSING, 2020, 12 (02)
  • [29] A CNN-RF Hybrid Approach for Rice Paddy Fields Mapping in Indramayu Using Sentinel-1 and Sentinel-2 Data
    Sudiana, Dodi
    Rizkinia, Mia
    Arief, Rahmat
    De Arifani, Tiara
    Lestari, Anugrah Indah
    Kushardono, Dony
    Prabuwono, Anton Satria
    Sumantyo, Josaphat Tetuko Sri
    IEEE ACCESS, 2025, 13 : 23234 - 23246
  • [30] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212