On the characteristic polynomial of the Aa-matrix for some operations of graphs

被引:0
作者
da Silva Junior, Joao Domingos Gomes [1 ,3 ]
Oliveira, Carla Silva [1 ,2 ]
da Costa, Liliana Manuela Gaspar Cerveira [3 ]
机构
[1] Ctr Fed Educ Tecnol Rio de Janeiro, Dept Engn Prod, Gen Canabarro 485, BR-20271204 Rio De Janeiro, RJ, Brazil
[2] Escola Nacl Ciencias Estat, Dept Matemat, Andre Cavalcanti 106, BR-20231050 Rio De Janeiro, RJ, Brazil
[3] Colegio Pedro II, Dept Matemat, Campo Sao Cristovao 177, BR-20921440 Rio De Janeiro, RJ, Brazil
关键词
Aa-characteristic polynomial; Graph operations; Eigenvalue; A(ALPHA)-SPECTRAL RADIUS;
D O I
10.1007/s40314-023-02329-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n with adjacency matrix A(G) and diagonal matrix of degree D(G). For every a ? [0, 1], Nikiforov (Appl Anal Discrete Math 11(1):81-107, 2017) defined the matrix Aa(G) = aD(G) + (1 - a)A(G). In this paper, we present the A(a)(G)-characteristic polynomial when G is obtained by coalescing two graphs, and if G is a semi-regular bipartite graph we obtain the Aa-characteristic polynomial of the line graph associated with G. Moreover, if G is a regular graph, we exhibit the Aa-characteristic polynomial for the graphs obtained from some operations.
引用
收藏
页数:22
相关论文
共 21 条
[1]   Positive semidefiniteness of Aα(G) on some families of graphs [J].
Brondani, A. E. ;
Franca, F. A. M. ;
Oliveira, C. S. .
DISCRETE APPLIED MATHEMATICS, 2022, 323 :113-123
[2]   Aα-Spectrum of a Firefly Graph [J].
Brondani, Andre Ebling ;
Oliveira, Carla Silva ;
Macedo Franca, Francisca Andrea ;
de Lima, Leonardo .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 :209-219
[3]   On the second largest Aα-eigenvalues of graphs [J].
Chen, Yuanyuan ;
Li, Dan ;
Meng, Jixiang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 :343-358
[4]  
Cvetkovic D., 2010, LONDON MATH SOC STUD
[5]   General equitable decompositions for graphs with symmetries [J].
Francis, Amanda ;
Smith, Dallas ;
Webb, Benjamin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 :287-316
[6]   PRINCIPAL SUBMATRICES OF A FULL-ROWED NON-NEGATIVE MATRIX [J].
GOLDBERG, K .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1959, 63 (01) :19-20
[7]  
Horn R.A., 2013, Matrix Analysis
[8]   THE Aα-SPECTRUM OF GRAPH PRODUCT [J].
Li, Shuchao ;
Wang, Shujing .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 :473-481
[9]  
Lin Hongzhou, 2017, arXiv
[10]   A note on the Aα-spectral radius of graphs [J].
Lin, Huiqiu ;
Huang, Xing ;
Xue, Jie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 :430-437