Defect and strain engineered MoS2/graphene catalyst for an enhanced hydrogen evolution reaction

被引:17
|
作者
Yang, Zhaoyuan [1 ]
Zhu, Jia [1 ]
Xu, Xianglan [2 ]
Wang, Lei [1 ]
Zhou, Guobing [1 ]
Yang, Zhen [1 ]
Zhang, Yongfan [3 ]
机构
[1] Jiangxi Normal Univ, Coll Chem & Chem Engn, Key Lab Fluorine & Silicon Energy Mat & Chem, Minist Educ, Nanchang 330022, Peoples R China
[2] Nanchang Univ, Inst Appl Chem, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[3] Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-LAYER MOS2; MOLECULAR-DYNAMICS; REACTION-MECHANISM; NANOSHEETS;
D O I
10.1039/d2ra07363c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molybdenum disulfide (MoS2) has been demonstrated as a promising non-precious metal electrocatalyst for the hydrogen evolution reaction (HER). However the efficiency of the HER falls short of expectations due to the large inert basal plane and poor electrical conductivity. In order to activate the MoS2 basal plane and enhance the hydrogen evolution reaction (HER) activity, two strategies on the hybrid MoS2/graphene, including intrinsic defects and simultaneous strain engineering, have been systematically investigated based on density functional theory calculations. We firstly investigated the HER activity of a MoS2/graphene hybrid material with seven types of point defect sites, V-S, V-S2, V-Mo, V-MoS3, V-MoS6, Mo-S2 and S2(Mo). Using the hydrogen adsorption free energy (Delta G(H)) as the descriptor, results demonstrate that four of these seven defects (V-S, V-S2, Mo-S2, V-MoS3) act as a catalytic active site for the HER and exhibited superior electrocatalytic activity. More importantly, we found that Delta G(H) can be further tuned to an ideal value (0 eV) with proper tensile strain, which effectively optimizes and boosts the HER activity, especially for the V-S, V-S2, V-MoS3 defects and Mo-S2 antisite defects. Our results demonstrated that a proper combination of tensile strain and defect structure is an effective approach to achieve more catalytic active sites and further tune and boost the intrinsic activity of the active sites for HER performance. Furthermore, the emendatory d-band center of metal proves to be an excellent descriptor for determining H adsorption strength on defective MoS2/graphene hybrid material under different strain conditions. In addition, the low kinetic barrier of H-2 evolution indicated that the defective MoS2/graphene system exhibited favorable kinetic activity in both the Volmer-Heyrovsky and the Volmer-Tafel mechanism. These results may pave a new way to design novel ultrahigh-performance MoS2-based HER catalysts.
引用
收藏
页码:4056 / 4064
页数:9
相关论文
共 50 条
  • [1] MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
    Li, Yanguang
    Wang, Hailiang
    Xie, Liming
    Liang, Yongye
    Hong, Guosong
    Dai, Hongjie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) : 7296 - 7299
  • [2] Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction
    Junfeng Xie
    Haichao Qu
    Jianping Xin
    Xinxia Zhang
    Guanwei Cui
    Xiaodong Zhang
    Jian Bao
    Bo Tang
    Yi Xie
    Nano Research, 2017, 10 : 1178 - 1188
  • [3] Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction
    Xie, Junfeng
    Qu, Haichao
    Xin, Jianping
    Zhang, Xinxia
    Cui, Guanwei
    Zhang, Xiaodong
    Bao, Jian
    Tang, Bo
    Xie, Yi
    NANO RESEARCH, 2017, 10 (04) : 1178 - 1188
  • [4] Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction
    Ye, Gonglan
    Gong, Yongji
    Lin, Junhao
    Li, Bo
    He, Yongmin
    Pantelides, Sokrates T.
    Zhou, Wu
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANO LETTERS, 2016, 16 (02) : 1097 - 1103
  • [5] Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS2 Catalyst
    Zhou, Wenda
    Chen, Mingyue
    Guo, Manman
    Hong, Aijun
    Yu, Ting
    Luo, Xingfang
    Yuan, Cailei
    Lei, Wen
    Wang, Shouguo
    NANO LETTERS, 2020, 20 (04) : 2923 - 2930
  • [6] Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution
    Min Wang
    Xiuxun Han
    Yun Zhao
    Jiajia Li
    Peng Ju
    Zhaomin Hao
    Journal of Materials Science, 2018, 53 : 3603 - 3612
  • [7] Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution
    Wang, Min
    Han, Xiuxun
    Zhao, Yun
    Li, Jiajia
    Ju, Peng
    Hao, Zhaomin
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (05) : 3603 - 3612
  • [8] MoS2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution
    Liao, Lei
    Zhu, Jie
    Bian, Xiaojun
    Zhu, Lina
    Scanlon, Micheal D.
    Girault, Hubert H.
    Liu, Baohong
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (42) : 5326 - 5333
  • [9] Rational design of MoS2 nanosheet/MoS2 nanowire homostructures and their enhanced hydrogen evolution reaction
    Yang, L.
    Yuan, X. Q.
    Liu, R. Y.
    Song, R. X.
    Wang, Q. W.
    Liang, W.
    CHALCOGENIDE LETTERS, 2023, 20 (09): : 639 - 648
  • [10] Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction
    Guo, Shaohui
    Zhang, Yuanyuan
    Tang, Songwei
    Wang, Bilin
    Wang, Yijin
    Song, Yaru
    Xin, Xu
    Zhang, Youzi
    Li, Xuanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 864