Extreme Eigenvalues and the Emerging Outlier in Rank-One Non-Hermitian Deformations of the Gaussian Unitary Ensemble

被引:6
|
作者
Fyodorov, Yan V. V. [1 ]
Khoruzhenko, Boris A. A. [2 ]
Poplavskyi, Mihail [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
non-Hermitian random matrices; complex eigenvalues; extreme eigenvalues; eigenvalue outlier; resonances; resonance trapping; STATISTICS; SPECTRA; UNIVERSALITY; SYSTEMS; POLES;
D O I
10.3390/e25010074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complex eigenvalues of random matrices J = GUE + i(gamma)diag(1,0, ... ,0) provide the simplest model for studying resonances in wave scattering from a quantum chaotic system via a single open channel. It is known that in the limit of large matrix dimensions N >> 1 the eigenvalue density of J undergoes an abrupt restructuring at gamma = 1, the critical threshold beyond which a single eigenvalue outlier ("broad resonance") appears. We provide a detailed description of this restructuring transition, including the scaling with N of the width of the critical region about the outlier threshold gamma = 1 and the associated scaling for the real parts ("resonance positions") and imaginary parts ("resonance widths") of the eigenvalues which are farthest away from the real axis. In the critical regime we determine the density of such extreme eigenvalues, and show how the outlier gradually separates itself from the rest of the extreme eigenvalues. Finally, we describe the fluctuations in the height of the eigenvalue outlier for large but finite N in terms of the associated large deviation function.
引用
收藏
页数:31
相关论文
共 12 条
  • [1] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):
  • [2] The bounds of the eigenvalues for rank-one modification of Hermitian matrix
    Cheng, Guanghui
    Song, Zhida
    Yang, Jianfeng
    Si, Jia
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) : 98 - 107
  • [3] Asymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble
    Bornemann, Folkmar
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [4] The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
    Cheng, GuangHui
    Luo, XiaoXue
    Li, Liang
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1191 - 1196
  • [5] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [6] Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Capizzano, SS
    Tilli, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) : 113 - 130
  • [7] Outlier eigenvalues for non-Hermitian polynomials in independent i.i.d. matrices and deterministic matrices
    Belinschi, Serban
    Bordenave, Charles
    Capitaine, Mireille
    Cebron, Guillaume
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [8] Regular Spacings of Complex Eigenvalues in the One-Dimensional Non-Hermitian Anderson Model
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Communications in Mathematical Physics, 2003, 238 : 505 - 524
  • [9] Regular Spacings of complex eigenvalues in the one-dimensional non-Hermitian Anderson model
    Goldsheid, IY
    Khoruzhenko, BA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) : 505 - 524
  • [10] An ensemble of non-Hermitian Gaussian-random 2 x 2 matrices admitting the Wigner surmise
    Ahmed, Z
    PHYSICS LETTERS A, 2003, 308 (2-3) : 140 - 142