Asymptotics of Subsampling for Generalized Linear Regression Models under Unbounded Design

被引:1
作者
Teng, Guangqiang [1 ]
Tian, Boping [1 ]
Zhang, Yuanyuan [2 ]
Fu, Sheng [3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Natl Univ Singapore, Dept Ind Syst Engn & Management, 21 Lowr Kent Ridge Rd, Singapore 119077, Singapore
基金
中国国家自然科学基金;
关键词
generalized linear models; massive data; nonnatural links; unbounded covariates; unconditional subsampling estimator; NORMALITY; CONSISTENCY;
D O I
10.3390/e25010084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimal subsampling is an statistical methodology for generalized linear models (GLMs) to make inference quickly about parameter estimation in massive data regression. Existing literature only considers bounded covariates. In this paper, the asymptotic normality of the subsampling M-estimator based on the Fisher information matrix is obtained. Then, we study the asymptotic properties of subsampling estimators of unbounded GLMs with nonnatural links, including conditional asymptotic properties and unconditional asymptotic properties.
引用
收藏
页数:21
相关论文
共 50 条
[41]   Generalized conditionally linear models [J].
Zhang, ZX ;
Holford, TR .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 62 (1-2) :105-121
[42]   Transformed generalized linear models [J].
Cordeiro, Gauss M. ;
de Andrade, Marinho G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) :2970-2987
[43]   On asymptotics of t-type regression estimation in multiple linear model [J].
Hengjian Cui .
Science in China Series A: Mathematics, 2004, 47 :628-639
[44]   On asymptotics of t-type regression estimation in multiple linear model [J].
GUI HengjianDepartment of Mathematics .
Science China Mathematics, 2004, (04) :628-639
[45]   On asymptotics of t-type regression estimation in multiple linear model [J].
Cui, HJ .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (04) :628-639
[46]   Local likelihood regression in generalized linear single-index models with applications to microarray data [J].
Lambert-Lacroix, Sophie ;
Peyre, Julie .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) :2091-2113
[47]   Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models [J].
Augugliaro, Luigi ;
Mineo, Angelo M. ;
Wit, Ernst C. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) :471-498
[48]   Simultaneous Optimization of Robust Parameter and Tolerance Design Based on Generalized Linear Models [J].
Shen, Lijuan ;
Yang, Jun ;
Zhao, Yu .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2013, 29 (08) :1107-1115
[49]   The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors [J].
Yun Bao Yao ;
Yu Tan Lü ;
Chao Lu ;
Wei Wang ;
Xue Jun Wang .
Acta Mathematica Sinica, English Series, 2024, 40 :1244-1272
[50]   The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors [J].
Yao, Yun Bao ;
Lu, Yu Tan ;
Lu, Chao ;
Wang, Wei ;
Wang, Xue Jun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) :1244-1272