Asymptotics of Subsampling for Generalized Linear Regression Models under Unbounded Design

被引:1
作者
Teng, Guangqiang [1 ]
Tian, Boping [1 ]
Zhang, Yuanyuan [2 ]
Fu, Sheng [3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Natl Univ Singapore, Dept Ind Syst Engn & Management, 21 Lowr Kent Ridge Rd, Singapore 119077, Singapore
基金
中国国家自然科学基金;
关键词
generalized linear models; massive data; nonnatural links; unbounded covariates; unconditional subsampling estimator; NORMALITY; CONSISTENCY;
D O I
10.3390/e25010084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimal subsampling is an statistical methodology for generalized linear models (GLMs) to make inference quickly about parameter estimation in massive data regression. Existing literature only considers bounded covariates. In this paper, the asymptotic normality of the subsampling M-estimator based on the Fisher information matrix is obtained. Then, we study the asymptotic properties of subsampling estimators of unbounded GLMs with nonnatural links, including conditional asymptotic properties and unconditional asymptotic properties.
引用
收藏
页数:21
相关论文
共 30 条
[1]   OPTIMAL SUBSAMPLING ALGORITHMS FOR BIG DATA REGRESSIONS [J].
Ai, Mingyao ;
Yu, Jun ;
Zhang, Huiming ;
Wang, HaiYing .
STATISTICA SINICA, 2021, 31 (02) :749-772
[2]  
Davidson J., 1994, Stochastic Limit Theory: An Introduction for Econometricians
[3]  
Durret R., 2019, PROBABILITY THEORY E, VFifth
[4]   CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN GENERALIZED LINEAR-MODELS [J].
FAHRMEIR, L ;
KAUFMANN, H .
ANNALS OF STATISTICS, 1985, 13 (01) :342-368
[5]   SIMPLEX-BASED MULTINOMIAL LOGISTIC REGRESSION WITH DIVERGING NUMBERS OF CATEGORIES AND COVARIATE [J].
Fu, Sheng ;
Chen, Piao ;
Liu, Yufeng ;
Ye, Zhisheng .
STATISTICA SINICA, 2023, 33 (04) :2463-2493
[6]   Markov Subsampling Based on Huber Criterion [J].
Gong, Tieliang ;
Dong, Yuxin ;
Chen, Hong ;
Dong, Bo ;
Li, Chen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) :2250-2262
[7]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&
[8]  
Jieli Ding, 2006, [Acta Mathematicae Applicatae Sinica, Ying yung shu hseh hseh pao], V22, P115
[9]  
Kotz S., 2004, WILEY SER PROB STAT, V1
[10]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86