Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics

被引:39
|
作者
Cheng, Chong-Dong [1 ]
Tian, Bo [1 ]
Shen, Yuan [1 ]
Zhou, Tian-Yu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota method; Pfaffian technique; Soliton solutions; Breather solutions; SOLITON-SOLUTIONS; RATIONAL SOLUTIONS; BACKLUND TRANSFORMATION; EQUATION;
D O I
10.1007/s11071-022-08189-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics is investigated. Bilinear form under certain coefficient constraints is given via the Hirota method. The Nth-order Pfaffian solutions are proved by means of the Pfaffian technique, where N is a positive integer. N-soliton and the higher-order breather solutions are exported through the Nth-order Pfaffian solutions. Different two-soliton/breather structures and their dynamics are derived. Elastic/inelastic interactions between the two solitons/breathers are investigated. Graphical representations of the influence of the coefficients in the equation on the velocities and amplitudes of the solitons and breathers are exhibited.
引用
收藏
页码:6659 / 6675
页数:17
相关论文
共 50 条
  • [21] Exact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation method
    Tarla, Sibel
    Ali, Karmina K.
    Yusuf, Abdullahi
    Uzun, Berna
    Salahshour, Soheil
    MODERN PHYSICS LETTERS B, 2025, 39 (13):
  • [22] Painlevé analysis, auto-Bäcklund transformations, bilinear form and analytic solutions on some nonzero backgrounds for a (2+1)-dimensional generalized nonlinear evolution system in fluid mechanics and plasma physics
    Zhou, Tian-Yu
    Tian, Bo
    Shen, Yuan
    Cheng, Chong-Dong
    NONLINEAR DYNAMICS, 2024, 112 (11) : 9355 - 9365
  • [23] Painleve integrability and new soliton solutions for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation and generalized Bogoyavlensky-Konopelchenko equation with variable coefficients in fluid mechanics
    Singh, S.
    Ray, S. Saha
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (14):
  • [24] Pfaffian representation of solutions to a coupled (2+1)-dimensional system
    Xu, Zong-Wei
    Yu, Guo-Fu
    APPLIED MATHEMATICS LETTERS, 2014, 33 : 46 - 56
  • [25] Complexiton and resonant multiple wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wu, Pinxia
    Zhang, Yufeng
    Muhammad, Iqbal
    Yin, Qiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 845 - 853
  • [26] Resonance Y-type soliton and hybrid solutions for a (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Konopelchenko-Schiff system in a fluid or plasma
    Zheng, Lu
    Tian, Bo
    Yang, Dan-Yu
    Chen, Yu-Qi
    MODERN PHYSICS LETTERS B, 2023, 37 (35):
  • [27] Painlevé Analysis,Soliton Solutions and Bcklund Transformation for Extended (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations in Fluid Mechanics via Symbolic Computation
    许鹏博
    高以天
    于鑫
    王雷
    林国栋
    CommunicationsinTheoreticalPhysics, 2011, 55 (06) : 1017 - 1023
  • [28] Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer-Kaup-Kupershmidt system for the shallow water
    Li, Liu-Qing
    Gao, Yi-Tian
    Yu, Xin
    Deng, Gao-Fu
    Ding, Cui-Cui
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (07) : 2282 - 2298
  • [29] Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma
    Yin, Hui-Min
    Tian, Bo
    Chai, Jun
    Wu, Xiao-Yu
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 126 - 131
  • [30] A generalized (2+1)-dimensional Hirota bilinear equation: integrability, solitons and invariant solutions
    Mandal, Uttam Kumar
    Malik, Sandeep
    Kumar, Sachin
    Das, Amiya
    NONLINEAR DYNAMICS, 2023, 111 (05) : 4593 - 4611