Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries

被引:4
|
作者
Hao, Yuefei [1 ]
Ding, Jie [1 ,2 ]
Huang, Shimeng [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order model; lithium-ion battery; coyote optimization algorithm; parameter identification; GLOBAL OPTIMIZATION; CHARGE ESTIMATION; STATE; IDENTIFICATION; SYSTEMS; HYBRID; MODELS;
D O I
10.1177/09576509221147330
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper studies the parameter estimation of fractional order equivalent circuit model of lithium-ion batteries. Since intelligent optimization algorithms can achieve parameters with high accuracy by transforming the parameter estimation into optimization problem, coyote optimization algorithm is taken in this paper by modifying two key steps so as to improve the accuracy and convergence speed. Firstly, tent chaotic map is introduced to avoid falling into local optimum and enhance population diversity. Secondly, dual strategy learning is employed to improve the searching ability, accuracy and convergence speed. Non-parametric statistical significance is tested by 6 benchmark functions with the comparison of other 5 optimization algorithms. Furthermore, the proposed algorithm is applied to identify the fractional order model of the Samsung ICR18650 (2600 mAh) and compared with conventional coyote optimization algorithm and particle swarm algorithm, which declared the excellence in identification accuracy.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 50 条
  • [41] An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter
    Zeng, Zhibing
    Tian, Jindong
    Li, Dong
    Tian, Yong
    ENERGIES, 2018, 11 (01):
  • [42] Electrochemical Model Parameter Estimation of a Lithium-Ion Battery Using a Metaheuristic Algorithm : Cascaded Improved Harmony Search
    Chun, Huiyong
    Han, Soohee
    IFAC PAPERSONLINE, 2018, 51 (28): : 409 - 413
  • [43] An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries
    Long, Bing
    Xian, Weiming
    Jiang, Lin
    Liu, Zhen
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 821 - 831
  • [44] Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles
    Xia, Bizhong
    Zhang, Guanyong
    Chen, Huiyuan
    Li, Yuheng
    Yu, Zhuojun
    Chen, Yunchao
    ENERGIES, 2022, 15 (09)
  • [45] A Novel Capacity Estimation Method for Lithium-Ion Batteries Based on the Adam Algorithm
    Lian, Yingying
    Qiao, Dongdong
    BATTERIES-BASEL, 2025, 11 (03):
  • [46] State of Charge Estimation in Lithium-Ion Batteries: A Neural Network Optimization Approach
    Lipu, M. S. Hossain
    Hannan, M. A.
    Hussain, Aini
    Ayob, Afida
    Saad, Mohamad H. M.
    Muttaqi, Kashem M.
    ELECTRONICS, 2020, 9 (09) : 1 - 24
  • [47] State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries
    Peng, Simin
    Wang, Yujian
    Tang, Aihua
    Jiang, Yuxia
    Kan, Jiarong
    Pecht, Michael
    ENERGY, 2025, 315
  • [48] Parameter estimation for the Hammerstein-Wiener nonlinear system and application in lithium-ion batteries
    Li, Feng
    Zhou, Shibo
    Liu, Ranran
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [49] Optimal design of experiment for parameter estimation of a Single Particle Model for lithium-ion batteries
    Pozzi, Andrea
    Ciaramella, Gabriele
    Gopalakrishnan, Krishnakumar
    Volkwein, Stefan
    Raimondo, Davide M.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6482 - 6487
  • [50] An Adaptive Observer Design for Real-Time Parameter Estimation in Lithium-Ion Batteries
    Limoge, Damas W.
    Annaswamy, Anuradha M.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (02) : 505 - 520