Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries

被引:4
|
作者
Hao, Yuefei [1 ]
Ding, Jie [1 ,2 ]
Huang, Shimeng [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order model; lithium-ion battery; coyote optimization algorithm; parameter identification; GLOBAL OPTIMIZATION; CHARGE ESTIMATION; STATE; IDENTIFICATION; SYSTEMS; HYBRID; MODELS;
D O I
10.1177/09576509221147330
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper studies the parameter estimation of fractional order equivalent circuit model of lithium-ion batteries. Since intelligent optimization algorithms can achieve parameters with high accuracy by transforming the parameter estimation into optimization problem, coyote optimization algorithm is taken in this paper by modifying two key steps so as to improve the accuracy and convergence speed. Firstly, tent chaotic map is introduced to avoid falling into local optimum and enhance population diversity. Secondly, dual strategy learning is employed to improve the searching ability, accuracy and convergence speed. Non-parametric statistical significance is tested by 6 benchmark functions with the comparison of other 5 optimization algorithms. Furthermore, the proposed algorithm is applied to identify the fractional order model of the Samsung ICR18650 (2600 mAh) and compared with conventional coyote optimization algorithm and particle swarm algorithm, which declared the excellence in identification accuracy.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 50 条
  • [31] A parameter adaptive method with dead zone for state of charge and parameter estimation of lithium-ion batteries
    Guo, Feng
    Hu, Guangdi
    Hong, Ru
    JOURNAL OF POWER SOURCES, 2018, 402 : 174 - 182
  • [32] The Open-Circuit Voltage Characteristic and State of Charge Estimation for Lithium-Ion Batteries Based on an Improved Estimation Algorithm
    Li, Ling-Ling
    Liu, Zhi-Feng
    Wang, Ching-Hsin
    JOURNAL OF TESTING AND EVALUATION, 2020, 48 (02) : 1712 - 1730
  • [33] Parameter Identification for Electrochemical Models of Lithium-Ion Batteries Using Bayesian Optimization
    Pi, Jianzong
    da Silva, Samuel Filgueira
    Ozkan, Mehmet Fatih
    Gupta, Abhishek
    Canova, Marcello
    IFAC PAPERSONLINE, 2024, 58 (28): : 180 - 185
  • [34] Stepwise Parameter Estimation Approach for Enhanced Single Particle Model in Lithium-Ion Batteries Using Genetic Algorithm
    Lee, Hyeon-Gyu
    Kim, Myung-Woo
    Jeon, Jae-Hoon
    Lee, Kyu-Jin
    Kim, Hong-Keun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)
  • [35] Polarization Voltage Characterization of Lithium-Ion Batteries Based on a Lumped Diffusion Model and Joint Parameter Estimation Algorithm
    Xia, Bizhong
    Ye, Bo
    Cao, Jianwen
    ENERGIES, 2022, 15 (03)
  • [36] An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    JOURNAL OF POWER SOURCES, 2018, 402 : 422 - 433
  • [37] Improved sliding mode based EKF for the SOC estimation of lithium-ion batteries
    Feng, Liang
    Ding, Jie
    Han, Yiyang
    IONICS, 2020, 26 (06) : 2875 - 2882
  • [38] Improved sliding mode based EKF for the SOC estimation of lithium-ion batteries
    Liang Feng
    Jie Ding
    Yiyang Han
    Ionics, 2020, 26 : 2875 - 2882
  • [39] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [40] Adaptive Temperature Estimation for Lithium-Ion Batteries
    Jiang, Yu
    Chen, Ziqiang
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 1066 - 1070