Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries

被引:4
|
作者
Hao, Yuefei [1 ]
Ding, Jie [1 ,2 ]
Huang, Shimeng [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order model; lithium-ion battery; coyote optimization algorithm; parameter identification; GLOBAL OPTIMIZATION; CHARGE ESTIMATION; STATE; IDENTIFICATION; SYSTEMS; HYBRID; MODELS;
D O I
10.1177/09576509221147330
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper studies the parameter estimation of fractional order equivalent circuit model of lithium-ion batteries. Since intelligent optimization algorithms can achieve parameters with high accuracy by transforming the parameter estimation into optimization problem, coyote optimization algorithm is taken in this paper by modifying two key steps so as to improve the accuracy and convergence speed. Firstly, tent chaotic map is introduced to avoid falling into local optimum and enhance population diversity. Secondly, dual strategy learning is employed to improve the searching ability, accuracy and convergence speed. Non-parametric statistical significance is tested by 6 benchmark functions with the comparison of other 5 optimization algorithms. Furthermore, the proposed algorithm is applied to identify the fractional order model of the Samsung ICR18650 (2600 mAh) and compared with conventional coyote optimization algorithm and particle swarm algorithm, which declared the excellence in identification accuracy.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 50 条
  • [31] Novel Improved Particle Swarm Optimization-Extreme Learning Machine Algorithm for State of Charge Estimation of Lithium-Ion Batteries
    Zhang, Chuyan
    Wang, Shunli
    Yu, Chunmei
    Xie, Yanxin
    Fernandez, Carlos
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (46) : 17209 - 17217
  • [32] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [33] A Novel Online Parameter Identification Algorithm for Fractional-Order Equivalent Circuit Model of Lithium-Ion Batteries
    Li, Lan
    Zhu, Huarong
    Zhou, Anjian
    Hu, Minghui
    Fu, Chunyun
    Qin, Datong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (07): : 6863 - 6879
  • [34] Parameter estimation of an electrochemistry-based lithium-ion battery model
    Masoudi, Ramin
    Uchida, Thomas
    McPhee, John
    JOURNAL OF POWER SOURCES, 2015, 291 : 215 - 224
  • [35] Fast Estimation of State of Charge for Lithium-Ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    ENERGIES, 2014, 7 (05) : 3438 - 3452
  • [36] An on-line electrochemical parameter estimation study of lithium-ion batteries using Neural Networks
    Jokar, Ali
    Rajabloo, Barzin
    Desilets, Martin
    Lacroix, Marcel
    LI-ION BATTERIES, 2017, 75 (20): : 73 - 87
  • [37] Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method
    Zhou, Sida
    Liu, Xinhua
    Hua, Yang
    Zhou, Xinan
    Yang, Shichun
    JOURNAL OF POWER SOURCES, 2021, 482
  • [38] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [39] SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction
    He, Ye
    Bai, Wenyuan
    Wang, Lulu
    Wu, Hongbin
    Ding, Ming
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [40] Parameter estimation of lithium-ion batteries and noise reduction using an H∞ filter
    Woo-Joo Yang
    Duk-Hyun Yu
    Young-Bae Kim
    Journal of Mechanical Science and Technology, 2013, 27 : 247 - 256