Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries

被引:4
|
作者
Hao, Yuefei [1 ]
Ding, Jie [1 ,2 ]
Huang, Shimeng [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order model; lithium-ion battery; coyote optimization algorithm; parameter identification; GLOBAL OPTIMIZATION; CHARGE ESTIMATION; STATE; IDENTIFICATION; SYSTEMS; HYBRID; MODELS;
D O I
10.1177/09576509221147330
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper studies the parameter estimation of fractional order equivalent circuit model of lithium-ion batteries. Since intelligent optimization algorithms can achieve parameters with high accuracy by transforming the parameter estimation into optimization problem, coyote optimization algorithm is taken in this paper by modifying two key steps so as to improve the accuracy and convergence speed. Firstly, tent chaotic map is introduced to avoid falling into local optimum and enhance population diversity. Secondly, dual strategy learning is employed to improve the searching ability, accuracy and convergence speed. Non-parametric statistical significance is tested by 6 benchmark functions with the comparison of other 5 optimization algorithms. Furthermore, the proposed algorithm is applied to identify the fractional order model of the Samsung ICR18650 (2600 mAh) and compared with conventional coyote optimization algorithm and particle swarm algorithm, which declared the excellence in identification accuracy.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 50 条
  • [1] Parameter Estimation for Lithium-ion Batteries Based on the Weighted Gradient Descent Algorithm
    Hu, Chong
    Ji, Yan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4789 - 4794
  • [2] Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm
    Zhang, Xiaohua
    Li, Haolin
    Zhang, Wenfeng
    Lopes, Antonio M.
    Wu, Xiaobo
    Chen, Liping
    MICROMACHINES, 2023, 14 (02)
  • [3] State of charge estimation of lithium-ion batteries based on an improved parameter identification method
    Xia, Bizhong
    Chen, Chaoren
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGY, 2015, 90 : 1426 - 1434
  • [4] Online Parameter Estimation of a Lithium-Ion Battery based on Sunflower Optimization Algorithm
    Mouncef, Elmarghichi
    Mostafa, Bouzi
    Naoufl, Ettalabi
    2020 IEEE 2ND GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2020), 2020, : 53 - 58
  • [5] Parameter Estimation of Lithium-Ion Batteries Dynamic Model Based on Water Cycle Algorithm
    Abou El-Ela, Radwa R.
    Elkholy, Mahmoud M.
    Selem, S., I
    Metwally, H. M. B.
    2017 NINETEENTH INTERNATIONAL MIDDLE-EAST POWER SYSTEMS CONFERENCE (MEPCON), 2017, : 127 - 133
  • [6] SoE estimation of lithium-ion batteries based on improved BPNN-MPF algorithm
    Ma Y.
    Guo Z.-X.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (01): : 263 - 272
  • [7] Robust parameter estimation approach of Lithium-ion batteries employing bald eagle search algorithm
    Fathy, Ahmed
    Ferahtia, Seydali
    Rezk, Hegazy
    Yousri, Dalia
    Abdelkareem, Mohammad Ali
    Olabi, Abdul Ghani
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10564 - 10575
  • [8] State of Health Estimation for Lithium-Ion Batteries Using an Explainable XGBoost Model with Parameter Optimization
    Xiao, Zhenghao
    Jiang, Bo
    Zhu, Jiangong
    Wei, Xuezhe
    Dai, Haifeng
    BATTERIES-BASEL, 2024, 10 (11):
  • [9] State of health estimation for lithium-ion batteries based on improved bat algorithm optimization kernel extreme learning machine
    Li, Xiangbin
    Fan, Diqing
    Liu, Xintian
    Xu, Shen
    Huang, Bixiong
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [10] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Yan Ma
    Jingpei Ru
    Mingyue Yin
    Hong Chen
    Weitao Zheng
    Journal of Applied Electrochemistry, 2016, 46 : 1119 - 1131