Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries

被引:4
|
作者
Hao, Yuefei [1 ]
Ding, Jie [1 ,2 ]
Huang, Shimeng [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order model; lithium-ion battery; coyote optimization algorithm; parameter identification; GLOBAL OPTIMIZATION; CHARGE ESTIMATION; STATE; IDENTIFICATION; SYSTEMS; HYBRID; MODELS;
D O I
10.1177/09576509221147330
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper studies the parameter estimation of fractional order equivalent circuit model of lithium-ion batteries. Since intelligent optimization algorithms can achieve parameters with high accuracy by transforming the parameter estimation into optimization problem, coyote optimization algorithm is taken in this paper by modifying two key steps so as to improve the accuracy and convergence speed. Firstly, tent chaotic map is introduced to avoid falling into local optimum and enhance population diversity. Secondly, dual strategy learning is employed to improve the searching ability, accuracy and convergence speed. Non-parametric statistical significance is tested by 6 benchmark functions with the comparison of other 5 optimization algorithms. Furthermore, the proposed algorithm is applied to identify the fractional order model of the Samsung ICR18650 (2600 mAh) and compared with conventional coyote optimization algorithm and particle swarm algorithm, which declared the excellence in identification accuracy.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 50 条
  • [1] Online Parameter Estimation of a Lithium-Ion Battery based on Sunflower Optimization Algorithm
    Mouncef, Elmarghichi
    Mostafa, Bouzi
    Naoufl, Ettalabi
    2020 IEEE 2ND GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2020), 2020, : 53 - 58
  • [2] Parameter and order estimation algorithms and convergence analysis for lithium-ion batteries
    Hu, Chong
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (18) : 11411 - 11433
  • [3] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Ma, Yan
    Ru, Jingpei
    Yin, Mingyue
    Chen, Hong
    Zheng, Weitao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (11) : 1119 - 1131
  • [4] Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm
    Zhang, Xiaohua
    Li, Haolin
    Zhang, Wenfeng
    Lopes, Antonio M.
    Wu, Xiaobo
    Chen, Liping
    MICROMACHINES, 2023, 14 (02)
  • [5] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [6] Parameter Estimation for Lithium-ion Batteries Based on the Weighted Gradient Descent Algorithm
    Hu, Chong
    Ji, Yan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4789 - 4794
  • [7] Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm
    Fahmy, Hend M.
    Sweif, Rania A.
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Alharbi, Mohammed
    Jurado, Francisco
    MATHEMATICS, 2023, 11 (09)
  • [8] Robust parameter estimation approach of Lithium-ion batteries employing bald eagle search algorithm
    Fathy, Ahmed
    Ferahtia, Seydali
    Rezk, Hegazy
    Yousri, Dalia
    Abdelkareem, Mohammad Ali
    Olabi, Abdul Ghani
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10564 - 10575
  • [9] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Yan Ma
    Jingpei Ru
    Mingyue Yin
    Hong Chen
    Weitao Zheng
    Journal of Applied Electrochemistry, 2016, 46 : 1119 - 1131
  • [10] Parameter identification and SOC estimation of lithium-ion battery based on AGCOA optimization
    Chu, Yunkun
    Li, Junhong
    Li, Lei
    Qiang, Yujian
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5964 - 5968