An improved thermal single particle model and parameter estimation for high-capacity battery cell

被引:12
作者
Hong, Changbeom [1 ]
Cho, Hyeonwoo [1 ]
Hong, Daeki [2 ]
Oh, Se-Kyu [2 ]
Kim, Yeonsoo [1 ]
机构
[1] Kwangwoon Univ, Dept Chem Engn, 20 Kwangwoon Ro, Seoul 01897, South Korea
[2] Hyundai Motor Co, Vehicle Control Technol Dev Team, Hwaseong 18280, South Korea
基金
新加坡国家研究基金会;
关键词
Single particle model; Battery temperature; High-capacity battery; Parameter estimation; Genetic algorithm; DEGRADATION PHYSICS; CHARGE ESTIMATION; ION; STATE; ELECTROLYTE;
D O I
10.1016/j.electacta.2022.141638
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Single particle model (SPM) is an electrochemical model which can be used with energy balance to calculate the state of charge, terminal voltage, and temperature of the battery. The conventional SPM neglects the lithium -ion dynamics in the electrolyte, and the energy balance usually does not consider the heat transfer delay from the battery center to the surface. These lead to model errors when SPM is used for high-capacity battery cells. In this study, we propose several strategies to improve the model accuracy for high-capacity battery cells. First, the actual discharge capacity is considered by modifying the desired Li-ion flux at the electrode surface. Second, a part of the equivalent circuit model is integrated with SPM to consider the resistance in the electrolyte computationally efficiently. Third, the delay in the heat transfer from the center to the surface is represented using a second-order system dynamic. In electric vehicles, battery cells are stacked as a pack; we account for the additional heat generated by stacking pressure-induced swelling repression. Finally, parameter estimation is conducted to determine the best parameter values of the model using the experimental data. The reference values are set using a dimensionless scale-up approach. When the parameters are estimated and the model is tested with the validation data, the error percentages in the calculated terminal voltage and temperature are smaller than 2.0410% and 3.5032%, respectively, even with the cell variances.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [42] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [43] A particle algorithm for sequential Bayesian parameter estimation and model selection
    Lee, DS
    Chia, NKK
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 326 - 336
  • [44] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [45] Improved Battery SOC Estimation Accuracy Using a Modified UKF With an Adaptive Cell Model Under Real EV Operating Conditions
    El Din, Menatalla Shehab
    Hussein, Ala A.
    Abdel-Hafez, Mamoun F.
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2018, 4 (02): : 408 - 417
  • [46] Lithium inventory estimation of battery using incremental capacity analysis, support vector machine, particle swarm optimisation
    Zhang, Xingbo
    Chen, Kui
    Long, Zhou
    Luo, Yang
    Li, Yang
    Zhu, Jiamin
    Liu, Kai
    Gao, Guoqiang
    Wu, Guangning
    IET ENERGY SYSTEMS INTEGRATION, 2024, : 765 - 775
  • [47] Performance mutation mechanism and parametric characterization method of high-capacity lithium-ion battery
    Wang, Yubin
    Zhang, Caiping
    Zhang, Linjing
    Li, Xiaohong
    Yang, Sijia
    Jia, Xinyu
    JOURNAL OF POWER SOURCES, 2021, 507
  • [48] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [49] Parameter estimation for the distribution of single cell lag times
    Baranyi, Jozsef
    George, Susan M.
    Kutalik, Zoltan
    JOURNAL OF THEORETICAL BIOLOGY, 2009, 259 (01) : 24 - 30
  • [50] Moving target parameter estimation for MIMO radar based on the improved particle filter
    Jinfeng Hu
    Hanwen Chen
    Yang Li
    Huiyong Li
    Julan Xie
    Multidimensional Systems and Signal Processing, 2018, 29 : 1 - 17