Adsorption thermodynamics of CO2 on nitrogen-doped biochar synthesized with moderate temperature ionic liquid

被引:6
|
作者
Du, Yarong [1 ]
Guo, Tianxiang [2 ,3 ]
Geng, Yuhan [2 ,3 ]
Zhang, Runan [2 ,3 ]
Kong, Lingfeng [2 ,3 ]
Fan, Zeng [2 ,3 ]
Xiao, Huining [4 ]
机构
[1] North China Elect Power Univ, Dept Power Engn, Baoding, Peoples R China
[2] North China Power Univ, Dept Environm Sci & Engn, Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding, Peoples R China
[3] North China Elect Power Univ, Coll Environm Sci & Engn, MOE Key Lab Resources & Environm Syst Optimizat, Beijing, Peoples R China
[4] Univ New Brunswick, Dept Chem Engn, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会; 北京市自然科学基金;
关键词
adsorption thermodynamics; carbon dioxide; interface potential; pressure effect; temperature effect; ENRICHED CARBON ADSORBENTS; AMINE ABSORBENTS; POROUS CARBONS; CAPTURE; DIOXIDE; KINETICS; EQUILIBRIUM; SELECTIVITY; ISOTHERM; ENERGY;
D O I
10.1002/cjce.24583
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The purpose of this work was to investigate the thermodynamic characteristics of carbon dioxide (CO2) adsorption on a promising nitrogen-doped biochar at constant temperature and isopiestic pressure. The biochar was prepared as a CO2 adsorbent based on catalytic pyrolysis of pristine coconut shells using urea as the nitrogen source and moderate temperature ionic liquid as a catalyst. The results showed that CO2 adsorption on the biochar was a spontaneous, dominantly physical, exothermic, and entropy decrement process that could be well described by the slip model and the dual-site Langmuir model. Those thermodynamic parameters, including interface potential, exhibited a series of interesting tendencies with the changes in adsorption temperature and pressure. Under the conditions of 273 K and 100 kPa, the adsorption capacity and the interface potential were 4.6 mmol/g and -16.7 J/g, respectively. And the site energy ranged from 2.57 to 5.13 kJ/mol in the test conditions, which became narrow with increasing temperature. The temperature exhibited positive effects on interface potential, enthalpy change, entropy change, enthalpy change, internal energy change but negative effects on adsorption capacity, Gibbs free energy change, and Helmholtz free energy change. Interestingly, the pressure exhibited the opposite effect trends. The peak pressure with maximum temperature effect at a given temperature and the peak temperature with maximum pressure effect at a given pressure were found to exist for some thermodynamic parameters. These exhibited a different but significantly beneficial perspective to understand the mass and energy transfer during CO2 adsorption on the biochar at constant temperature and isopiestic pressure, which have rarely been reported before.
引用
收藏
页码:1772 / 1791
页数:20
相关论文
共 50 条
  • [41] CO2 Absorption Property of Ionic Liquid and CO2 Permselectivity for Ionic Liquid Membrane
    Makino, Takashi
    Kanakubo, Mitsuhiro
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2016, 59 (04) : 109 - 117
  • [42] Nitrogen-doped fullerenes for CO2 capture: a DFT study
    Anila, Sebastian
    Suresh, Cherumuttathu H.
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (06) : 3047 - 3054
  • [43] CO2 Adsorption on Hazelnut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized by Single-Step Sodium Amide Activation
    Liu, Shenfang
    Ma, Rui
    Hu, Xin
    Wang, Linlin
    Wang, Xinyi
    Radosz, Maciej
    Fan, Maohong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (15) : 7046 - 7053
  • [44] CO2 Adsorption of Nitrogen-Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke
    Yang, Jie
    Yue, Limin
    Lin, Binbin
    Wang, Linlin
    Zhao, Yongle
    Lin, Ying
    Chang, Kaijiao
    DaCosta, Herbert
    Hu, Xin
    ENERGY & FUELS, 2017, 31 (10) : 11060 - 11068
  • [45] Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO2 capture
    Psarras, Peter
    He, Jiajun
    Wilcox, Jennifer
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (41) : 28747 - 28758
  • [46] A novel removal of CO2 using nitrogen doped biochar beads as a green adsorbent
    Minh-Viet Nguyen
    Lee, Byeong-Kyu
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2016, 104 : 490 - 498
  • [47] CO2 adsorption in nitrogen-doped single-layered graphene quantum dots: a spectroscopic investigation
    de Oliveira Neto, Pedro H.
    Rodrigues, Joao P. C. C.
    de Sousa, Leonardo E.
    Gargano, Ricardo
    da Cunha, Wiliam F.
    JOURNAL OF MOLECULAR MODELING, 2019, 25 (03)
  • [48] Supercritical CO2 preparation of SBA-15 supported ionic liquid and its adsorption for CO2
    Yin, Jian-Zhong
    Zhen, Meng-Yuan
    Cai, Pei
    Zhou, Dan
    Li, Zhuo-Jian
    Zhu, Hong-Yue
    Xu, Qin-Qin
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [49] Sulfur doped microporous carbons for CO2 adsorption
    Shi, Jinsong
    Yan, Nanfu
    Cui, Hongmin
    Liu, Yuewei
    Weng, Yaqing
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (05): : 4605 - 4611
  • [50] Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO2 Capture
    Li, Di
    Chen, Yanli
    Zheng, Min
    Zhao, Haifeng
    Zhao, Yunfeng
    Sun, Zaicheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (01): : 298 - 304