Meta-Analysis of the Effects of Overexpressed bZIP Transcription Factors in Plants under Drought Stress

被引:5
|
作者
Tao, Ran [1 ]
Liu, Yaqiu [1 ]
Chen, Su [2 ]
Shityakov, Sergey [3 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, Harbin 150040, Peoples R China
[3] ITMO Univ, Infochem Sci Ctr, Lab Chemoinformat, St Petersburg 191002, Russia
来源
PLANTS-BASEL | 2024年 / 13卷 / 03期
关键词
meta-analysis; drought stress; bZIP transcription factors; overexpressed; TOLERANCE; ARABIDOPSIS; PROLINE;
D O I
10.3390/plants13030337
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The bZIP (basic leucine zipper) transcription factors have been identified as key regulators of plant responses to drought stress, which limits plant growth and yield. Overexpression of bZIP genes has shown potential in enhancing drought tolerance in various plant species. However, the constrained types of individual studies and inconsistencies among experimental approaches has resulted in a lack of statistical significance and limited the extrapolation of bZIP transcription factor overexpression for plant improvement. We conducted a meta-analysis to evaluate ten measured parameters of drought tolerance in bZIP transcription factor-expressing plants as well as moderators affecting the performance of transgenic plants. The results showed that seven parameters, including survival rate as well as the content of regulatory substances (proline accumulation, H2O2 concentration, CAT activity, POD activity, SOD activity and MDA accumulation), were most affected while the impact on physiological status indicators is not significant. In addition, donor/recipient species, treatment medium, duration and methods of simulating drought stress all significantly impacted the degree of drought stress tolerance in plants to some extent among the considered moderators. The findings underscore the potential of bZIP transcription factors as key targets for genetic engineering approaches aimed at improving plant resilience to water scarcity.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress
    Lai, Huiping
    Wang, Mengyao
    Yan, Lu
    Feng, Caiyun
    Tian, Yang
    Tian, Xinyue
    Peng, Donghui
    Lan, Siren
    Zhang, Yanping
    Ai, Ye
    PLANTS-BASEL, 2024, 13 (02):
  • [42] A Comprehensive Meta-analysis to Identify the Responsive Genes in Sorghum Under Salinity and Drought Stresses (Sorghum bicolor)
    Kazemi, Hossein
    Sabouri, Atefeh
    Aalami, Ali
    Abedi, Amin
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (11) : 7096 - 7115
  • [43] Drought effects on root and tuber production: A meta-analysis
    Daryanto, Stefani
    Wang, Lixin
    Jacinthe, Pierre-Andre
    AGRICULTURAL WATER MANAGEMENT, 2016, 176 : 122 - 131
  • [44] Meta-analysis of transcriptomic responses to cold stress in plants
    Vergata, Chiara
    Yousefi, Sanaz
    Buti, Matteo
    Vestrucci, Federica
    Gholami, Mansour
    Sarikhani, Hassan
    Salami, Seyed Alireza
    Martinelli, Federico
    FUNCTIONAL PLANT BIOLOGY, 2022, 49 (08) : 704 - 724
  • [45] Genome-Wide Identification and Characterization of MYB Transcription Factors in Sudan Grass under Drought Stress
    Liu, Qiuxu
    Xu, Yalin
    Li, Xiangyan
    Qi, Tiangang
    Li, Bo
    Wang, Hong
    Zhu, Yongqun
    PLANTS-BASEL, 2024, 13 (18):
  • [46] Arbuscular Mycorrhizal Fungi Mediated Alleviation of Drought Stress via Non-Enzymatic Antioxidants: A Meta-Analysis
    Chandrasekaran, Murugesan
    PLANTS-BASEL, 2022, 11 (19):
  • [47] Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana
    Mun, Bong-Gyu
    Lee, Sang-Uk
    Park, Eung-Jun
    Kim, Hyun-Ho
    Hussain, Adil
    Imran, Qari Muhammad
    Lee, In-Jung
    Yun, Byung-Wook
    3 BIOTECH, 2017, 7
  • [48] Genome-Wide Analysis of the bZIP Transcription Factors in Cucumber
    Baloglu, Mehmet Cengiz
    Eldem, Vahap
    Hajyzadeh, Mortaza
    Unver, Turgay
    PLOS ONE, 2014, 9 (04):
  • [50] The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions
    Mohamed, Mostafa H. M.
    Ali, Maha Mohamed Elsayed
    Zewail, Reda M. Y.
    Liava, Vasiliki
    Petropoulos, Spyridon A.
    HORTICULTURAE, 2024, 10 (08)