Meta-Analysis of the Effects of Overexpressed bZIP Transcription Factors in Plants under Drought Stress

被引:5
|
作者
Tao, Ran [1 ]
Liu, Yaqiu [1 ]
Chen, Su [2 ]
Shityakov, Sergey [3 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, Harbin 150040, Peoples R China
[3] ITMO Univ, Infochem Sci Ctr, Lab Chemoinformat, St Petersburg 191002, Russia
来源
PLANTS-BASEL | 2024年 / 13卷 / 03期
关键词
meta-analysis; drought stress; bZIP transcription factors; overexpressed; TOLERANCE; ARABIDOPSIS; PROLINE;
D O I
10.3390/plants13030337
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The bZIP (basic leucine zipper) transcription factors have been identified as key regulators of plant responses to drought stress, which limits plant growth and yield. Overexpression of bZIP genes has shown potential in enhancing drought tolerance in various plant species. However, the constrained types of individual studies and inconsistencies among experimental approaches has resulted in a lack of statistical significance and limited the extrapolation of bZIP transcription factor overexpression for plant improvement. We conducted a meta-analysis to evaluate ten measured parameters of drought tolerance in bZIP transcription factor-expressing plants as well as moderators affecting the performance of transgenic plants. The results showed that seven parameters, including survival rate as well as the content of regulatory substances (proline accumulation, H2O2 concentration, CAT activity, POD activity, SOD activity and MDA accumulation), were most affected while the impact on physiological status indicators is not significant. In addition, donor/recipient species, treatment medium, duration and methods of simulating drought stress all significantly impacted the degree of drought stress tolerance in plants to some extent among the considered moderators. The findings underscore the potential of bZIP transcription factors as key targets for genetic engineering approaches aimed at improving plant resilience to water scarcity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Identification and expression analysis of bZIP transcription factors in Setaria italica in response to dehydration stress
    Yang, Xuefei
    Gao, Changyong
    Hu, Yaqian
    Ma, Qianru
    Li, Zejun
    Wang, Jing
    Li, Zhaoqun
    Zhang, Li
    Li, Dongming
    FRONTIERS IN GENETICS, 2024, 15
  • [32] Analysis of bZIP Transcription Factor Family and Their Expressions under Salt Stress in Chlamydomonas reinhardtii
    Ji, Chunli
    Mao, Xue
    Hao, Jingyun
    Wang, Xiaodan
    Xue, Jinai
    Cui, Hongli
    Li, Runzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
  • [33] Comprehensive analysis of bZIP transcription factors in passion fruit
    Ma, Funing
    Zhou, Hongwu
    Xu, Yi
    Huang, Dongmei
    Wu, Bin
    Xing, Wenting
    Chen, Di
    Xu, Bingqiang
    Song, Shun
    ISCIENCE, 2023, 26 (04)
  • [34] Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas
    Wang, Zhanjun
    Zhu, Jin
    Yuan, Wenya
    Wang, Ying
    Hu, Peipei
    Jiao, Chunyan
    Xia, Haimeng
    Wang, Dandan
    Cai, Qianwen
    Li, Jie
    Wang, Chenchen
    Zhang, Xie
    Chen, Yansong
    Wang, Zhaoxia
    Ou, Zulan
    Xu, Zhongdong
    Shi, Jisen
    Chen, Jinhui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 181 : 1207 - 1223
  • [35] A meta-analysis of microarray data revealed hub genes and transcription factors involved in drought stress response in rice (Oryza sativa L.)
    Soltanpour, Sedigheh
    Tarinejad, AliReza
    Hasanpur, Karim
    Majidi, Mohammad
    FUNCTIONAL PLANT BIOLOGY, 2022, 49 (10) : 898 - 916
  • [36] Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress
    Lai, Huiping
    Wang, Mengyao
    Yan, Lu
    Feng, Caiyun
    Tian, Yang
    Tian, Xinyue
    Peng, Donghui
    Lan, Siren
    Zhang, Yanping
    Ai, Ye
    PLANTS-BASEL, 2024, 13 (02):
  • [37] Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus
    An, Xia
    Jin, Guanrong
    Luo, Xiahong
    Chen, Changli
    Li, Wenlue
    Zhu, Guanlin
    PEERJ, 2020, 8
  • [38] Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress
    Hwang, Indeok
    Manoharan, Ranjith Kumar
    Kang, Jong-Goo
    Chung, Mi-Young
    Kim, Young-Wook
    Nou, Ill-Sup
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [39] Potential of forest thinning to mitigate drought stress: A meta-analysis
    Sohn, Julia A.
    Saha, Somidh
    Bauhus, Juergen
    FOREST ECOLOGY AND MANAGEMENT, 2016, 380 : 261 - 273
  • [40] A meta-analysis of drought effects on litter decomposition in streams
    Ferreira, Veronica
    Graca, Manuel A. S.
    Elosegi, Arturo
    HYDROBIOLOGIA, 2023, 850 (08) : 1715 - 1735