Meta-Analysis of the Effects of Overexpressed bZIP Transcription Factors in Plants under Drought Stress

被引:5
|
作者
Tao, Ran [1 ]
Liu, Yaqiu [1 ]
Chen, Su [2 ]
Shityakov, Sergey [3 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, Harbin 150040, Peoples R China
[3] ITMO Univ, Infochem Sci Ctr, Lab Chemoinformat, St Petersburg 191002, Russia
来源
PLANTS-BASEL | 2024年 / 13卷 / 03期
关键词
meta-analysis; drought stress; bZIP transcription factors; overexpressed; TOLERANCE; ARABIDOPSIS; PROLINE;
D O I
10.3390/plants13030337
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The bZIP (basic leucine zipper) transcription factors have been identified as key regulators of plant responses to drought stress, which limits plant growth and yield. Overexpression of bZIP genes has shown potential in enhancing drought tolerance in various plant species. However, the constrained types of individual studies and inconsistencies among experimental approaches has resulted in a lack of statistical significance and limited the extrapolation of bZIP transcription factor overexpression for plant improvement. We conducted a meta-analysis to evaluate ten measured parameters of drought tolerance in bZIP transcription factor-expressing plants as well as moderators affecting the performance of transgenic plants. The results showed that seven parameters, including survival rate as well as the content of regulatory substances (proline accumulation, H2O2 concentration, CAT activity, POD activity, SOD activity and MDA accumulation), were most affected while the impact on physiological status indicators is not significant. In addition, donor/recipient species, treatment medium, duration and methods of simulating drought stress all significantly impacted the degree of drought stress tolerance in plants to some extent among the considered moderators. The findings underscore the potential of bZIP transcription factors as key targets for genetic engineering approaches aimed at improving plant resilience to water scarcity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice
    Ali, Kishwar
    Rai, R. D.
    Tyagi, Aruna
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2016, 54 (05) : 332 - 337
  • [32] Comprehensive analysis of bZIP transcription factors in passion fruit
    Ma, Funing
    Zhou, Hongwu
    Xu, Yi
    Huang, Dongmei
    Wu, Bin
    Xing, Wenting
    Chen, Di
    Xu, Bingqiang
    Song, Shun
    ISCIENCE, 2023, 26 (04)
  • [33] Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress
    Su, Jiuchang
    Zhan, Na
    Cheng, Xiaoru
    Song, Shanglin
    Dong, Tianyu
    Ge, Xiaoyang
    Duan, Hongying
    PLANT AND CELL PHYSIOLOGY, 2024, 65 (01) : 79 - 94
  • [34] Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis
    Chandrasekaran, Murugesan
    Paramasivan, Manivannan
    PLANT AND SOIL, 2022, 480 (1-2) : 295 - 303
  • [35] Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis
    Auge, Robert M.
    Toler, Heather D.
    Saxton, Arnold M.
    MYCORRHIZA, 2015, 25 (01) : 13 - 24
  • [36] Meta-analysis of the effect of melatonin application on abiotic stress tolerance in plants
    Yang, Xiaoxiao
    Ren, Jianhong
    Li, Juanjuan
    Lin, Xinyue
    Xia, Xiangyu
    Yan, Wenjie
    Zhang, Yuxin
    Deng, Xiping
    Ke, Qingbo
    PLANT BIOTECHNOLOGY REPORTS, 2023, 17 (01) : 39 - 52
  • [37] Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis
    Murugesan Chandrasekaran
    Manivannan Paramasivan
    Plant and Soil, 2022, 480 : 295 - 303
  • [38] Toxic effects of microplastics and nanoplastics on plants: A global meta-analysis
    Wang, Congcong
    Luo, Qing
    Zhang, Jieliu
    Zhang, Xinyu
    Yang, Ning
    Feng, Liangshan
    ENVIRONMENTAL POLLUTION, 2023, 337
  • [39] Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress
    Hwang, Indeok
    Manoharan, Ranjith Kumar
    Kang, Jong-Goo
    Chung, Mi-Young
    Kim, Young-Wook
    Nou, Ill-Sup
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [40] Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus
    An, Xia
    Jin, Guanrong
    Luo, Xiahong
    Chen, Changli
    Li, Wenlue
    Zhu, Guanlin
    PEERJ, 2020, 8