Opportunities and tradeoffs in single-cell transcriptomic technologies

被引:10
|
作者
Conte, Matilde I. [1 ]
Fuentes-Trillo, Azahara [1 ]
Conde, Cecilia Dominguez [1 ]
机构
[1] Human Technopole, Viale Rita,Levi-Montalcini 1, I-20157 Milan, Italy
关键词
RNA-SEQ; EXPRESSION; DYNAMICS;
D O I
10.1016/j.tig.2023.10.003
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent technological and algorithmic advances enable single-cell transcriptomic analysis with remarkable depth and breadth. Nonetheless, a persistent challenge is the compromise between the ability to profile high numbers of cells and the achievement of full-length transcript coverage. Currently, the field is progressing and developing new and creative solutions that improve cellular throughput, gene detection sensitivity and full-length transcript capture. Furthermore, longread sequencing approaches for single-cell transcripts are breaking frontiers that have previously blocked full transcriptome characterization. We here present a comprehensive overview of available options for single-cell transcriptome profiling, highlighting the key advantages and disadvantages of each approach.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [31] Single-cell transcriptomic analysis of mouse neocortical development
    Loo, Lipin
    Simon, Jeremy M.
    Xing, Lei
    McCoy, Eric S.
    Niehaus, Jesse K.
    Guo, Jiami
    Anton, E. S.
    Zylka, Mark J.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [32] Global coordination level in single-cell transcriptomic data
    Amit, Guy
    Ben Porath, Dana Vaknin
    Levy, Orr
    Hamdi, Omer
    Bashan, Amir
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] Bioinformatics for Single-Cell Transcriptomic Analysis of Tumor Heterogeneity
    Shimamura, Teppei
    CANCER SCIENCE, 2018, 109 : 352 - 352
  • [34] Single-cell transcriptomic landscape of human blood cells
    Xie, Xiaowei
    Liu, Mengyao
    Zhang, Yawen
    Wang, Bingrui
    Zhu, Caiying
    Wang, Chenchen
    Li, Qing
    Huo, Yingying
    Guo, Jiaojiao
    Xu, Changlu
    Hu, Linping
    Pang, Aiming
    Ma, Shihui
    Wang, Lina
    Cao, Wenbin
    Chen, Shulian
    Li, Qiuling
    Zhang, Sudong
    Zhao, Xueying
    Zhou, Wen
    Luo, Hongbo
    Zheng, Guoguang
    Jiang, Erlie
    Feng, Sizhou
    Chen, Lixiang
    Shi, Lihong
    Cheng, Hui
    Hao, Sha
    Zhu, Ping
    Cheng, Tao
    NATIONAL SCIENCE REVIEW, 2021, 8 (03)
  • [35] Time-resolved single-cell transcriptomic sequencing
    Xu, Xing
    Wen, Qianxi
    Lan, Tianchen
    Zeng, Liuqing
    Zeng, Yonghao
    Lin, Shiyan
    Qiu, Minghao
    Na, Xing
    Yang, Chaoyong
    CHEMICAL SCIENCE, 2024, : 19225 - 19246
  • [36] A single-cell transcriptomic atlas of the developing chicken limb
    Christian Feregrino
    Fabio Sacher
    Oren Parnas
    Patrick Tschopp
    BMC Genomics, 20
  • [37] Global coordination level in single-cell transcriptomic data
    Guy Amit
    Dana Vaknin Ben Porath
    Orr Levy
    Omer Hamdi
    Amir Bashan
    Scientific Reports, 12
  • [38] Single-cell transcriptomic atlas of goat ovarian aging
    Dejun Xu
    Shuaifei Song
    Fuguo Wang
    Yawen Li
    Ziyuan Li
    Hui Yao
    Yongju Zhao
    Zhongquan Zhao
    JournalofAnimalScienceandBiotechnology, 2024, 15 (01) : 146 - 161
  • [39] A single-cell transcriptomic landscape of primate arterial aging
    Zhang, Weiqi
    Zhang, Shu
    Yan, Pengze
    Ren, Jie
    Song, Moshi
    Li, Jingyi
    Lei, Jinghui
    Pan, Huize
    Wang, Si
    Ma, Xibo
    Ma, Shuai
    Li, Hongyu
    Sun, Fei
    Wan, Haifeng
    Li, Wei
    Chan, Piu
    Zhou, Qi
    Liu, Guang-Hui
    Tang, Fuchou
    Qu, Jing
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [40] Cancer biology deciphered by single-cell transcriptomic sequencing
    Li, Yanmeng
    Jin, Jianshi
    Bai, Fan
    PROTEIN & CELL, 2022, 13 (03) : 167 - 179