Purification for Hybrid Entanglement between Discrete- and Continuous-Variable States

被引:2
|
作者
Luo, Cheng-Chen [1 ,2 ,3 ]
Zhou, Lan [4 ]
Zhong, Wei [3 ]
Du, Ming-Ming [1 ,2 ]
Li, Xi-Yun [4 ]
Sheng, Yu-Bo [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
bit-flip error; entanglement purification; hybrid entanglement; QUANTUM CRYPTOGRAPHY; TELEPORTATION; GENERATION;
D O I
10.1002/andp.202300494
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid entangled states (HES) have attracted significant attention and been utilized in various quantum information processing applications. However, like many other entangled states, maximally entangled HES may degrade to mixed states due to environmental noise and operational imperfections. In this paper, a hybrid entanglement purification protocol (HEPP) for the HES, which consists of photon-number state and coherent state is proposed. This HEPP is designed to effectively purify a bit-flip error occurring in any qubit of the HES. Furthermore, HEPP is extended to a general condition, say, the multi-party scenario, and integrates the generation of HES into the HEPP. Moreover, if different initial mixed states are chosen, then the residual entanglement can be utilized to distill high-quality entanglement. The HEPP has important applications in the future quantum information processing field. The hybrid entanglement purification protocol integrated with the generation of the hybrid entangled state (HES). The "Source" generates two pairs of desired HESs shared by Alice and Bob. Md and Mc are designed to make the parity checks for the discrete- and continuous-variable parts of the HESs, respectively.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Continuous-variable multimode entanglement in multi-wave mixing
    Shi, Wenxing
    Wang, Fei
    Zhang, Lihui
    Zhan, Zhiming
    Li, Xing
    OPTICS COMMUNICATIONS, 2012, 285 (21-22) : 4446 - 4452
  • [22] Displacement-enhanced continuous-variable entanglement concentration
    Cernotik, Ondrej
    Fiurasek, Jaromir
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [23] Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light
    Le Jeannic, H.
    Cavailles, A.
    Raskop, J.
    Huang, K.
    Laurat, J.
    OPTICA, 2018, 5 (08): : 1012 - 1015
  • [24] THREE-COLOR CONTINUOUS-VARIABLE ENTANGLEMENT DIRECTLY PRODUCED IN AN OPTICAL SUPERLATTICE
    Yu, Y. B.
    Shi, Z. T.
    Wang, H. T.
    Qin, Y. F.
    Lai, L. F.
    Jin, S. H.
    Zhu, S. N.
    Yu, X. Q.
    Wang, J. F.
    Xu, P.
    Leng, H. Y.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 427 - 434
  • [25] Cross talk compensation in multimode continuous-variable entanglement distribution
    Kovalenko, Olena
    Usenko, Vladyslav C.
    Filip, Radim
    OPTICS EXPRESS, 2021, 29 (15) : 24083 - 24101
  • [26] Computable criterion for partial entanglement in continuous-variable quantum systems
    Gabriel, Andreas
    Huber, Marcus
    Radic, Sasa
    Hiesmayr, Beatrix C.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [27] Multipartite continuous-variable optical quantum entanglement: Generation and application
    Asavanant, Warit
    Furusawa, Akira
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [28] Noisy certification of continuous-variable graph states
    Descamps, Eloi
    Markham, Damian
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [29] Enhanced continuous-variable entanglement by a pair of nonlinearly coupled waveguides
    Wang KeQuan
    Fan QiuBo
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (09): : 1307 - 1312
  • [30] Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States
    Guo, Ying
    Feng, Yanyan
    Huang, Dazu
    Shi, Jinjing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2290 - 2302