Purification for Hybrid Entanglement between Discrete- and Continuous-Variable States

被引:2
|
作者
Luo, Cheng-Chen [1 ,2 ,3 ]
Zhou, Lan [4 ]
Zhong, Wei [3 ]
Du, Ming-Ming [1 ,2 ]
Li, Xi-Yun [4 ]
Sheng, Yu-Bo [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
bit-flip error; entanglement purification; hybrid entanglement; QUANTUM CRYPTOGRAPHY; TELEPORTATION; GENERATION;
D O I
10.1002/andp.202300494
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid entangled states (HES) have attracted significant attention and been utilized in various quantum information processing applications. However, like many other entangled states, maximally entangled HES may degrade to mixed states due to environmental noise and operational imperfections. In this paper, a hybrid entanglement purification protocol (HEPP) for the HES, which consists of photon-number state and coherent state is proposed. This HEPP is designed to effectively purify a bit-flip error occurring in any qubit of the HES. Furthermore, HEPP is extended to a general condition, say, the multi-party scenario, and integrates the generation of HES into the HEPP. Moreover, if different initial mixed states are chosen, then the residual entanglement can be utilized to distill high-quality entanglement. The HEPP has important applications in the future quantum information processing field. The hybrid entanglement purification protocol integrated with the generation of the hybrid entangled state (HES). The "Source" generates two pairs of desired HESs shared by Alice and Bob. Md and Mc are designed to make the parity checks for the discrete- and continuous-variable parts of the HESs, respectively.image
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Continuous-Variable Entanglement Swapping
    Marshall, Kevin
    Weedbrook, Christian
    ENTROPY, 2015, 17 (05): : 3152 - 3159
  • [12] On-chip continuous-variable quantum entanglement
    Masada, Genta
    Furusawa, Akira
    NANOPHOTONICS, 2016, 5 (03) : 469 - 482
  • [13] Hybrid Entanglement between Optical Discrete Polarizations and Continuous Quadrature Variables
    Wen, Jianming
    Novikova, Irina
    Qian, Chen
    Zhang, Chuanwei
    Du, Shengwang
    PHOTONICS, 2021, 8 (12)
  • [14] Nondestructive verification of continuous-variable entanglement
    de Faria, Alencar J.
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [15] Continuous-variable multipartite entanglement in an integrated microcomb
    Jia, Xinyu
    Zhai, Chonghao
    Zhu, Xuezhi
    You, Chang
    Cao, Yunyun
    Zhang, Xuguang
    Zheng, Yun
    Fu, Zhaorong
    Mao, Jun
    Dai, Tianxiang
    Chang, Lin
    Su, Xiaolong
    Gong, Qihuang
    Wang, Jianwei
    NATURE, 2025, : 329 - 336
  • [16] CONTINUOUS-VARIABLE ENTANGLEMENT OF THE CAVITY AND EXCITON MODE
    Wu, E.
    Zhang, Xiao-An
    Wang, Xi-Ming
    Zeng, Li-Xia
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 357 - 363
  • [17] Continuous-variable entanglement via multiphoton catalysis
    Hu, Liyun
    Liao, Zeyang
    Zubairy, M. Suhail
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [18] Deterministic distribution of multipartite entanglement in a quantum network by continuous-variable polarization states
    Wu, Liang
    Chai, Ting
    Liu, Yanhong
    Zhou, Yaoyao
    Qin, Jiliang
    Yan, Zhihui
    Jia, Xiaojun
    OPTICS EXPRESS, 2022, 30 (04) : 6388 - 6396
  • [19] Multicolor Continuous-Variable Quantum Entanglement in the Kerr Frequency Comb
    Li, Ming
    Zhang, Yan-Lei
    Xu, Xin-Biao
    Dong, Chun-Hua
    Guo, Guang-Can
    Zou, Chang-Ling
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (12)
  • [20] Quantum memory for entangled continuous-variable states
    Jensen, K.
    Wasilewski, W.
    Krauter, H.
    Fernholz, T.
    Nielsen, B. M.
    Owari, M.
    Plenio, M. B.
    Serafini, A.
    Wolf, M. M.
    Polzik, E. S.
    NATURE PHYSICS, 2011, 7 (01) : 13 - 16