Large Language Models are Versatile Decomposers: Decomposing Evidence and Questions for Table-based Reasoning

被引:12
|
作者
Ye, Yunhu [1 ,4 ]
Hui, Binyuan [2 ]
Yang, Min [3 ]
Li, Binhua [2 ]
Huang, Fei [2 ]
Li, Yongbin [2 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] DAMO Acad, Alibaba Grp, Hangzhou, Peoples R China
[3] Chinese Acad Sci, SIAT, Shenzhen, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023 | 2023年
关键词
Table-based reasoning; Large language models; Pre-trained language models;
D O I
10.1145/3539618.3591708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Table-based reasoning has shown remarkable progress in a wide range of table-based tasks. It is a challenging task, which requires reasoning over both free-form natural language (NL) questions and (semi-)structured tabular data. However, previous table-based reasoning solutions usually suffer from significant performance degradation on "huge" evidence (tables). In addition, most existing methods struggle to reason over complex questions since the essential information is scattered in different places. To alleviate the above challenges, we exploit large language models (LLMs) as decomposers for effective table-based reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information for table reasoning, and (ii) decompose a complex question into simpler sub-questions for text reasoning. First, we use a powerful LLM to decompose the evidence involved in the current question into the sub-evidence that retains the relevant information and excludes the remaining irrelevant information from the "huge" evidence. Second, we propose a novel "parsing-execution-filling" strategy to decompose a complex question into simper step-by-step sub-questions by generating intermediate SQL queries as a bridge to produce numerical and logical sub-questions with a powerful LLM. Finally, we leverage the decomposed sub-evidence and sub-questions to get the final answer with a few in-context prompting examples. Extensive experiments on three benchmark datasets (TabFact, WikiTableQuestion, and FetaQA) demonstrate that our method achieves significantly better results than competitive baselines for table-based reasoning. Notably, our method outperforms human performance for the first time on the TabFact dataset. In addition to impressive overall performance, our method also has the advantage of interpretability, where the returned results are to some extent tractable with the generated sub-evidence and sub-questions. For reproducibility, we release our source code and data at: https://github.com/AlibabaResearch/DAMO-ConvAI.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 50 条
  • [1] Are Large Language Models Table-based Fact-Checkers?
    Zhang, Hanwen
    Si, Qingyi
    Fu, Peng
    Lin, Zheng
    Wang, Weiping
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3086 - 3091
  • [2] A survey of table reasoning with large language models
    Zhang, Xuanliang
    Wang, Dingzirui
    Dou, Longxu
    Zhu, Qingfu
    Che, Wanxiang
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (09)
  • [3] On Implementing Case-Based Reasoning with Large Language Models
    Wilkerson, Kaitlynne
    Leake, David
    CASE-BASED REASONING RESEARCH AND DEVELOPMENT, ICCBR 2024, 2024, 14775 : 404 - 417
  • [4] Inductive reasoning in humans and large language models
    Han, Simon Jerome
    Ransom, Keith J.
    Perfors, Andrew
    Kemp, Charles
    COGNITIVE SYSTEMS RESEARCH, 2024, 83
  • [5] Reasoning with Large Language Models on Graph Tasks: The Influence of Temperature
    Wang, Yiming
    Zhang, Ziyang
    Chen, Hanwei
    Shen, Huayi
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 630 - 634
  • [6] Large language models present new questions for decision support
    Handler, Abram
    Larsen, Kai R.
    Hackathorn, Richard
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2024, 79
  • [7] Can large language models reason about medical questions?
    Lievin, Valentin
    Hother, Christoffer Egeberg
    Motzfeldt, Andreas Geert
    Winther, Ole
    PATTERNS, 2024, 5 (03):
  • [8] A sepsis diagnosis method based on Chain-of-Thought reasoning using Large Language Models
    Zhang, Weimin
    Wu, Mengfei
    Zhou, Luyao
    Shao, Min
    Wang, Cui
    Wang, Yu
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2025, 45 (02) : 269 - 277
  • [9] The Language of Creativity: Evidence from Humans and Large Language Models
    Orwig, William
    Edenbaum, Emma R.
    Greene, Joshua D.
    Schacter, Daniel L.
    JOURNAL OF CREATIVE BEHAVIOR, 2024, 58 (01) : 128 - 136
  • [10] Commonsense Reasoning and Explainable Artificial Intelligence Using Large Language Models
    Krause, Stefanie
    Stolzenburg, Frieder
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 302 - 319