Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation

被引:1
|
作者
Richter, Maria [1 ]
Morales, Felipe [1 ]
Patchkovskii, Serguei [1 ]
Husakou, Anton [1 ]
机构
[1] Max Born Inst Nonlinear Opt & Short Pulse Spect, Max Born Str 2a, D-12489 Berlin, Germany
关键词
SCHRODINGER-EQUATION; PULSE-PROPAGATION; FEMTOSECOND; GENERATION; POWER;
D O I
10.1364/OE.499406
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We establish a first-principle model for the simulation of spatiotemporal light pulse dynamics based on the combination of the time-dependent Schrodinger equation and the unidirectional propagation equation. The proposed numerical scheme enables computationally efficient simulation while being stable and accurate. We use the new model to examine self-focusing of a short pulse in atomic hydrogen and show that an accurate description of the excited-levels dynamics can only be achieved by a propagation model with an ab-initio description of the light-matter interaction, which accounts for the laser-dressed multilevel structure of the system, including bound and free states, and its sub-cycle response.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:39941 / 39952
页数:12
相关论文
共 50 条
  • [1] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [2] Several Numerical Simulation Methods for the Time-Dependent Schrödinger Equation
    Luo, Song
    Cao, Yanhua
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2024, 53 (02) : 69 - 88
  • [3] Investigating proton tunneling dynamics in the time-dependent Schrödinger equation
    Nanni, Luca
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (18) : 1614 - 1623
  • [4] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [5] Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics
    Min-Ho Lee
    Chang Woo Byun
    Nark Nyul Choi
    Dae-Soung Kim
    Journal of the Korean Physical Society, 2018, 73 : 1269 - 1278
  • [6] Exponential fitting method for the time-dependent Schrödinger equation
    M. Rizea
    Journal of Mathematical Chemistry, 2010, 48 : 55 - 65
  • [7] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136
  • [8] Solution of the Schrödinger equation for the time-dependent linear potential
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 341021 - 341023
  • [9] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948
  • [10] Schrödinger and Dirac dynamics on time-dependent quantum graph
    D S Nikiforov
    I V Blinova
    I Y Popov
    Indian Journal of Physics, 2019, 93 : 913 - 920