FABNet: Frequency-Aware Binarized Network for Single Image Super-Resolution

被引:7
作者
Jiang, Xinrui [1 ]
Wang, Nannan [1 ]
Xin, Jingwei [1 ]
Li, Keyu [1 ]
Yang, Xi [1 ]
Li, Jie
Wang, Xiaoyu [2 ]
Gao, Xinbo [3 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
关键词
Quantization (signal); Superresolution; Task analysis; Neural networks; Discrete wavelet transforms; Image coding; Electronic mail; Single image super-resolution; binary neural network; wavelet decomposition; lightweight;
D O I
10.1109/TIP.2023.3328565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remarkable achievements have been obtained with binary neural networks (BNN) in real-time and energy-efficient single-image super-resolution (SISR) methods. However, existing approaches often adopt the Sign function to quantize image features while ignoring the influence of image spatial frequency. We argue that we can minimize the quantization error by considering different spatial frequency components. To achieve this, we propose a frequency-aware binarized network (FABNet) for single image super-resolution. First, we leverage the wavelet transformation to decompose the features into low-frequency and high-frequency components and then employ a "divide-and-conquer" strategy to separately process them with well-designed binary network structures. Additionally, we introduce a dynamic binarization process that incorporates learned-threshold binarization during forward propagation and dynamic approximation during backward propagation, effectively addressing the diverse spatial frequency information. Compared to existing methods, our approach is effective in reducing quantization error and recovering image textures. Extensive experiments conducted on four benchmark datasets demonstrate that the proposed methods could surpass state-of-the-art approaches in terms of PSNR and visual quality with significantly reduced computational costs. Our codes are available at https://github.com/xrjiang527/FABNet-PyTorch.
引用
收藏
页码:6234 / 6247
页数:14
相关论文
共 50 条
  • [21] Region Attention Network For Single Image Super-resolution
    Du, Xiaobiao
    Liu, Chongjin
    Yang, Xiaoling
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [22] Upsampling Attention Network for Single Image Super-resolution
    Zheng, Zhijie
    Jiao, Yuhang
    Fang, Guangyou
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 399 - 406
  • [23] Multipath feedforward network for single image super-resolution
    Mingyu Shen
    Pengfei Yu
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2019, 78 : 19621 - 19640
  • [24] Deep Residual Network for Single Image Super-Resolution
    Wang, Haimin
    Liao, Kai
    Yan, Bin
    Ye, Run
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 66 - 70
  • [25] Multipath feedforward network for single image super-resolution
    Shen, Mingyu
    Yu, Pengfei
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (14) : 19621 - 19640
  • [26] Global Learnable Attention for Single Image Super-Resolution
    Su, Jian-Nan
    Gan, Min
    Chen, Guang-Yong
    Yin, Jia-Li
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8453 - 8465
  • [27] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [28] A Two-Stage Attentive Network for Single Image Super-Resolution
    Zhang, Jiqing
    Long, Chengjiang
    Wang, Yuxin
    Piao, Haiyin
    Mei, Haiyang
    Yang, Xin
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1020 - 1033
  • [29] Lightweight Attended Multi-Scale Residual Network for Single Image Super-Resolution
    Yan, Yitong
    Xu, Xue
    Chen, Wenhui
    Peng, Xinyi
    IEEE ACCESS, 2021, 9 (09): : 52202 - 52212
  • [30] Soft-Edge Assisted Network for Single Image Super-Resolution
    Fang, Faming
    Li, Juncheng
    Zeng, Tieyong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 4656 - 4668