FABNet: Frequency-Aware Binarized Network for Single Image Super-Resolution

被引:7
|
作者
Jiang, Xinrui [1 ]
Wang, Nannan [1 ]
Xin, Jingwei [1 ]
Li, Keyu [1 ]
Yang, Xi [1 ]
Li, Jie
Wang, Xiaoyu [2 ]
Gao, Xinbo [3 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
关键词
Quantization (signal); Superresolution; Task analysis; Neural networks; Discrete wavelet transforms; Image coding; Electronic mail; Single image super-resolution; binary neural network; wavelet decomposition; lightweight;
D O I
10.1109/TIP.2023.3328565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remarkable achievements have been obtained with binary neural networks (BNN) in real-time and energy-efficient single-image super-resolution (SISR) methods. However, existing approaches often adopt the Sign function to quantize image features while ignoring the influence of image spatial frequency. We argue that we can minimize the quantization error by considering different spatial frequency components. To achieve this, we propose a frequency-aware binarized network (FABNet) for single image super-resolution. First, we leverage the wavelet transformation to decompose the features into low-frequency and high-frequency components and then employ a "divide-and-conquer" strategy to separately process them with well-designed binary network structures. Additionally, we introduce a dynamic binarization process that incorporates learned-threshold binarization during forward propagation and dynamic approximation during backward propagation, effectively addressing the diverse spatial frequency information. Compared to existing methods, our approach is effective in reducing quantization error and recovering image textures. Extensive experiments conducted on four benchmark datasets demonstrate that the proposed methods could surpass state-of-the-art approaches in terms of PSNR and visual quality with significantly reduced computational costs. Our codes are available at https://github.com/xrjiang527/FABNet-PyTorch.
引用
收藏
页码:6234 / 6247
页数:14
相关论文
共 50 条
  • [1] Frequency-Aware Degradation Modeling for Real-World Thermal Image Super-Resolution
    Qu, Chao
    Chen, Xiaoyu
    Xu, Qihan
    Han, Jing
    ENTROPY, 2024, 26 (03)
  • [2] Learning frequency-aware convolutional neural network for spatio-temporal super-resolution water surface waves
    Peng, Chen
    Tu, Zaili
    Qiu, Sheng
    Li, Chen
    Wang, Changbo
    Qin, Hong
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2022, 33 (06)
  • [3] Resolution-Aware Network for Image Super-Resolution
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1259 - 1269
  • [4] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [5] An efficient lightweight network for single image super-resolution*
    Tang, Yinggan
    Zhang, Xiang
    Zhang, Xuguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [6] Dual-aware transformer network for single-image super-resolution
    Luo, Zhonghua
    Wang, Li
    Wang, Fengzhou
    Ruan, Yinglan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [7] Deep Shearlet Residual Learning Network for Single Image Super-Resolution
    Geng, Tianyu
    Liu, Xiao-Yang
    Wang, Xiaodong
    Sun, Guiling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4129 - 4142
  • [8] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [9] Learn to Zoom in Single Image Super-Resolution
    Zhang, Zili
    Favaro, Paolo
    Tian, Yan
    Li, Jianxiang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1237 - 1241
  • [10] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211