Integrating image processing and deep learning for effective analysis and classification of dust pollution in mining processes

被引:15
作者
Yin, Jiangjiang [1 ]
Lei, Jiangyang [1 ]
Fan, Kaixin [1 ]
Wang, Shaofeng [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dust pollution; Hazard analysis; Grayscale average; Fractal dimension; Deep learning; COAL-MINE; DIFFUSION; FACE;
D O I
10.1007/s40789-023-00653-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A comprehensive evaluation method is proposed to analyze dust pollution generated in the production process of mines. The method employs an optimized image-processing and deep learning framework to characterize the gray and fractal features in dust images. The research reveals both linear and logarithmic correlations between the gray features, fractal dimension, and dust mass, while employing Chauvenel criteria and arithmetic averaging to minimize data discreteness. An integrated hazardous index is developed, including a logarithmic correlation between the index and dust mass, and a four-category dataset is subsequently prepared for the deep learning framework. Based on the range of the hazardous index, the dust images are divided into four categories. Subsequently, a dust risk classification system is established using the deep learning model, which exhibits a high degree of performance after the training process. Notably, the model achieves a testing accuracy of 95.3%, indicating its effectiveness in classifying different levels of dust pollution, and the precision, recall, and F1-score of the system confirm its reliability in analyzing dust pollution. Overall, the proposed method provides a reliable and efficient way to monitor and analyze dust pollution in mines.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Classification of Potato Disease with Digital Image Processing Technique: A Hybrid Deep Learning Framework
    Faria, Fatema Tuj Johora
    Bin Moin, Mukaffi
    Al Wase, Ahmed
    Sani, Md. Rabius
    Hasib, Khan Md
    Alam, Mohammad Shafiul
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 820 - 826
  • [32] Application Analysis and Prospect of Deep Learning in Remote Sensing Image Classification
    Shen, Xiajiong
    Jin, Yan
    Zhou, Ke
    Zhang, Yanna
    MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [33] Integrated image and location analysis for wound classification: a deep learning approach
    Yash Patel
    Tirth Shah
    Mrinal Kanti Dhar
    Taiyu Zhang
    Jeffrey Niezgoda
    Sandeep Gopalakrishnan
    Zeyun Yu
    Scientific Reports, 14
  • [34] Integrated image and location analysis for wound classification: a deep learning approach
    Patel, Yash
    Shah, Tirth
    Dhar, Mrinal Kanti
    Zhang, Taiyu
    Niezgoda, Jeffrey
    Gopalakrishnan, Sandeep
    Yu, Zeyun
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [35] Implementation and Efficient Analysis of Preprocessing Techniques in Deep Learning for Image Classification
    H., James Deva Koresh
    CURRENT MEDICAL IMAGING, 2024, 20 : e290823220482
  • [36] A Comprehensive Analysis for Advancements and Challenges in Deep Learning Models for Image Processing
    Ch, Ravikumar
    Chary, Kalvog Prakasha
    Srinivas, S.
    Bhavani, Tedla
    Veeranna
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 229 - 234
  • [37] Application of deep learning and image processing analysis of photographs for amblyopia screening
    Murali, Kaushik
    Krishna, Viswesh
    Krishna, Vrishab
    Kumari, B.
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (07) : 1407 - 1410
  • [38] Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
    Wang, Pin
    Fan, En
    Wang, Peng
    PATTERN RECOGNITION LETTERS, 2021, 141 : 61 - 67
  • [39] Microplastic pollution monitoring with holographic classification and deep learning
    Zhu, Yanmin
    Hang Yeung, Chok
    Lam, Edmund Y.
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [40] Classification of stochastic processes based on deep learning
    Al-Murisi, Shamsan A.
    Tang, Xiangong
    Deng, Weihua
    JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (01):