Challenges and Opportunities: Metal-Organic Frameworks for Direct Air Capture

被引:40
|
作者
Bose, Saptasree [1 ]
Sengupta, Debabrata [1 ]
Rayder, Thomas M. [1 ]
Wang, Xiaoliang [1 ]
Kirlikovali, Kent O. [1 ,5 ]
Sekizkardes, Ali K. [2 ,3 ]
Islamoglu, Timur [1 ]
Farha, Omar K. [1 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[3] NETL Support Contractor, R&D Plateau, Pittsburgh, PA 15236 USA
[4] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[5] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
carbon dioxide; direct air capture; mechanisms; metal-organic frameworks; regeneration; scale-up; stability; structures; CARBON-DIOXIDE CAPTURE; CO2; CAPTURE; FLUE-GAS; ADSORPTION; DESIGN; MOF; SELECTIVITY; STABILITY; PERFORMANCE; ACTIVATION;
D O I
10.1002/adfm.202307478
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Global reliance on fossil fuel combustion for energy production has contributed to the rising concentration of atmospheric CO2, creating significant global climate challenges. In this regard, direct air capture (DAC) of CO2 from the atmosphere has emerged as one of the most promising strategies to counteract the harmful effects on the environment, and the further development and commercialization of this technology will play a pivotal role in achieving the goal of net-zero emissions by 2050. Among various DAC adsorbents, metal-organic frameworks (MOFs) show great potential due to their high porosity and ability to reversibly adsorb CO2 at low concentrations. However, the adsorption efficiency and cost-effectiveness of these materials must be improved to be widely deployed as DAC sorbents. To that end, this perspective provides a critical discussion on several types of benchmark MOFs that have demonstrated high CO2 capture capacities, including an assessment of their stability, CO2 capture mechanism, capture-release cycling behavior, and scale-up synthesis. It then concludes by highlighting limitations that must be addressed for these MOFs to go from the research laboratory to implementation in DAC devices on a global scale so they can effectively mitigate climate change. Metal-organic frameworks, which are a versatile class of crystalline, porous adsorbents, have emerged as promising materials for use in carbon dioxide direct air capture applications. These materials are potentially capable of reversing the harmful effects of climate change by reducing greenhouse gas emissions on a global scale.image
引用
收藏
页数:19
相关论文
共 50 条
  • [41] The Gore-Tex® effect in externally hydrophobic Metal-Organic Frameworks
    Miller, Kaleb L.
    Lin, Rijia
    Hou, Jingwei
    Kepert, Cameron J.
    D'Alessandro, Deanna M.
    Solomon, Marcello B.
    MATERIALS ADVANCES, 2024, 5 (05): : 1868 - 1874
  • [42] Metal-Organic Frameworks for Phthalate Capture
    Gulcay-Ozcan, Ezgi
    Iacomi, Paul
    Brantuas, Pedro F.
    Rioland, Guillaume
    Maurin, Guillaume
    Devautour-Vinot, Sabine
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (41) : 48216 - 48224
  • [43] Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia
    Vikrant, Kumar
    Kumar, Vanish
    Kim, Ki-Hyun
    Kukkar, Deepak
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (44) : 22877 - 22896
  • [44] Superhydrophobicity in Highly Fluorinated Porous Metal-Organic Frameworks
    Serre, Christian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) : 6048 - 6050
  • [45] Evaluating the Robustness of Metal-Organic Frameworks for Synthetic Chemistry
    Wang, Zihao
    Bilegsaikhan, Arvin
    Jerozal, Ronald T.
    Pitt, Tristan A.
    Milner, Phillip J.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (15) : 17517 - 17531
  • [46] Metal-Organic Frameworks: Opportunities for Catalysis
    Farrusseng, David
    Aguado, Sonia
    Pinel, Catherine
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (41) : 7502 - 7513
  • [47] Accelerated Discovery of Metal-Organic Frameworks for CO2 Capture by Artificial Intelligence
    Gulbalkan, Hasan Can
    Aksu, Gokhan Onder
    Ercakir, Goktug
    Keskin, Seda
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 63 (01) : 37 - 48
  • [48] Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study
    Xue, Wenjuan
    Li, Zhengjie
    Huang, Hongliang
    Yang, Qingyuan
    Liu, Dahuan
    Xu, Qing
    Zhong, Chongli
    CHEMICAL ENGINEERING SCIENCE, 2016, 140 : 1 - 9
  • [49] Application of computational chemistry for adsorption studies on metal-organic frameworks used for carbon capture
    Renita, A. Annam
    Sivasubramanian, V
    PHYSICAL SCIENCES REVIEWS, 2020, 5 (02)
  • [50] Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal-Organic Frameworks
    Gladysiak, Andrzej
    Song, Ah-Young
    Vismara, Rebecca
    Waite, Madison
    Alghoraibi, Nawal M.
    Alahmed, Ammar H.
    Younes, Mourad
    Huang, Hongliang
    Reimer, Jeffrey A.
    Stylianou, Kyriakos C.
    JACS AU, 2024, 4 (11): : 4527 - 4536