Enhanced neural network-based polytopic model for large-signal black-box modeling of power electronic converters

被引:0
作者
Colot, Antonin [1 ]
Giannitrapani, Antonio [2 ]
Paoletti, Simone [2 ]
Cornelusse, Bertrand [1 ]
机构
[1] Univ Liege, Inst Montefiore, Liege, Belgium
[2] Univ Siena, Dept Informat Engn & Math, Siena, Italy
来源
2023 IEEE BELGRADE POWERTECH | 2023年
关键词
polytopic model; power electronic converters; system identification; artificial neural networks;
D O I
10.1109/POWERTECH55446.2023.10202812
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a large-signal black-box model of power electronic converters inspired by polytopic models. Small-signal models are identified around different operating points to mimic the converter's local dynamics. The linear models' responses are then weighted using a trained neural network to create a large-signal model. The traditional trial and error weighting function tuning of polytopic models can result in a suboptimal combination of linear models. In this work, we use neural networks to approach an optimal combination. The analysis of the trained neural network can enhance the model's accuracy by suggesting new small-signal models. It also permits removing linear models that do not significantly improve the global model's accuracy while reducing complexity. The methodology is applied to a voltage-regulated DC-DC boost converter and provides accurate models of converter dynamics.
引用
收藏
页数:6
相关论文
共 12 条
  • [1] Polytopic Black-Box Modeling of DC-DC Converters
    Arnedo, Luis
    Boroyevich, Dushan
    Burgos, Rolando
    Wang, Fred
    [J]. 2008 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-10, 2008, : 1015 - 1021
  • [2] Cvetkovic I, 2011, IEEE ENER CONV, P791, DOI 10.1109/ECCE.2011.6063851
  • [3] dynoNet: A neural network architecture for learning dynamical systems
    Forgione, Mar
    Piga, Dario
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (04) : 612 - 626
  • [4] A Blackbox Large Signal Lyapunov-based Stability Analysis Method for Power Converter-based Systems
    Frances, A.
    Asensi, R.
    Garcia, O.
    Uceda, J.
    [J]. 2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2016,
  • [5] Francés A, 2016, IEEE ENER CONV
  • [6] Blackbox Polytopic Model With Dynamic Weighting Functions for DC-DC Converters
    Frances, Airan
    Asensi, Rafael
    Uceda, Javier
    [J]. IEEE ACCESS, 2019, 7 : 160263 - 160273
  • [7] Modeling Electronic Power Converters in Smart DC Microgrids An-Overview
    Frances, Airan
    Asensi, Rafael
    Garcia, Oscar
    Prieto, Roberto
    Uceda, Javier
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (06) : 6274 - 6287
  • [8] Nelles O., 1997, IFAC P, V30, P639
  • [9] Qashqai P, 2020, IEEE IND ELEC, P4697, DOI [10.1109/iecon43393.2020.9255375, 10.1109/IECON43393.2020.9255375]
  • [10] Black-Box Modelling of a DC-DC Buck Converter Based on a Recurrent Neural Network
    Rojas-Duenas, Gabriel
    Riba, Jordi-Roger
    Kahalerras, Khaled
    Moreno-Eguilaz, Manuel
    Kadechkar, Akash
    Gomez-Pau, Alvaro
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2020, : 456 - 461