Theoretical and Computational Analysis of the Thermal Quasi-Geostrophic Model

被引:6
|
作者
Crisan, D. [1 ]
Holm, D. D. [1 ]
Luesink, E. [2 ]
Mensah, P. R. [1 ]
Pan, W. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Twente, Dept Math, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Oceanography; Bathymetry; Potential vorticity; Analysis of partial differential equations; Finite element methods; Rossby waves; OCEAN MODEL; EULER; EQUATIONS; VARIABILITY; DYNAMICS;
D O I
10.1007/s00332-023-09943-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version a-TQG converge to solutions of TQG as its smoothing parameter a ? 0 and we obtain blow-up criteria for the a-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of a-TQG solutions to TQG solutions as a ? 0, for example, simulations in appropriate GFD regimes.
引用
收藏
页数:58
相关论文
共 50 条
  • [31] Existence, stability and formation of baroclinic tripoles in quasi-geostrophic flows
    Reinaud, Jean N.
    Carton, Xavier
    JOURNAL OF FLUID MECHANICS, 2015, 785 : 1 - 30
  • [32] Nonequilibrium fluctuations of the direct cascade in surface quasi-geostrophic turbulence
    Valadao, V. J.
    Ceccotti, T.
    Boffetta, G.
    Musacchio, S.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (09):
  • [33] A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation
    Jolly, Michael S.
    Martinez, Vincent R.
    Titi, Edriss S.
    ADVANCED NONLINEAR STUDIES, 2017, 17 (01) : 167 - 192
  • [34] Similarity reductions of barotropic and quasi-geostrophic potential vorticity equation
    Huang, F
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (06) : 903 - 908
  • [35] DISCONTINUOUS FRONTS AS EXACT SOLUTIONS TO PRECIPITATING QUASI-GEOSTROPHIC EQUATIONS
    Wetzel, Alfredo N.
    Smith, Leslie M.
    Stechmann, Samuel N.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (04) : 1341 - 1366
  • [36] The Modified Quasi-geostrophic Barotropic Models Based on Unsteady Topography
    Zhao, Baojun
    Sun, Wenjin
    Zhan, Tianming
    EARTH SCIENCES RESEARCH JOURNAL, 2017, 21 (01) : 23 - 28
  • [37] Atmospheric rivers and water fluxes in precipitating quasi-geostrophic turbulence
    Edwards, Thomas K.
    Smith, Leslie M.
    Stechmann, Samuel N.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (729) : 1960 - 1975
  • [38] Local estimation of quasi-geostrophic flows in Earth's core
    Schwaiger, T.
    Jault, D.
    Gillet, N.
    Schaeffer, N.
    Mandea, M.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 234 (01) : 494 - 511
  • [39] NONCONVERGENCE OF THE ROTATING STRATIFIED FLOWS TOWARD THE QUASI-GEOSTROPHIC DYNAMICS
    Jo, Min jun
    Kim, Junha
    Lee, Jihoon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3357 - 3385
  • [40] Similarity Reductions of Barotropic and Quasi-geostrophic Potential Vorticity Equation
    HUANG Fei Laboratory of Physical Oceanography
    Communications in Theoretical Physics, 2004, 42 (12) : 903 - 908