Theoretical and Computational Analysis of the Thermal Quasi-Geostrophic Model

被引:6
|
作者
Crisan, D. [1 ]
Holm, D. D. [1 ]
Luesink, E. [2 ]
Mensah, P. R. [1 ]
Pan, W. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Twente, Dept Math, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Oceanography; Bathymetry; Potential vorticity; Analysis of partial differential equations; Finite element methods; Rossby waves; OCEAN MODEL; EULER; EQUATIONS; VARIABILITY; DYNAMICS;
D O I
10.1007/s00332-023-09943-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version a-TQG converge to solutions of TQG as its smoothing parameter a ? 0 and we obtain blow-up criteria for the a-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of a-TQG solutions to TQG solutions as a ? 0, for example, simulations in appropriate GFD regimes.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Theoretical and Computational Analysis of the Thermal Quasi-Geostrophic Model
    D. Crisan
    D. D. Holm
    E. Luesink
    P. R. Mensah
    W. Pan
    Journal of Nonlinear Science, 2023, 33
  • [2] The equatorial counterpart of the quasi-geostrophic model
    Theiss, Juergen
    Mohebalhojeh, Ali R.
    JOURNAL OF FLUID MECHANICS, 2009, 637 : 327 - 356
  • [3] A stochastic precipitating quasi-geostrophic model
    Chen, Nan
    Mou, Changhong
    Smith, Leslie M.
    Zhang, Yeyu
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [4] COMPUTATIONAL ANALYSIS OF POTENTIAL VORTICITY AND QUASI-GEOSTROPHIC APPROXIMATION FOR THE QUASI-HYDROSTATICS THERMAL ROTATING SHALLOW WATER EQUATIONS
    Jean-Louis, K. M.
    Lollchund, R. M.
    Giraldo, F. X.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2023, 2023, : 75 - 82
  • [5] The assessment of the equatorial counterpart of the quasi-geostrophic model
    Mohebalhojeh, Ali R.
    Theiss, Juergen
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (658) : 1327 - 1339
  • [6] Traditional quasi-geostrophic modes and surface quasi-geostrophic solutions in the Southwestern Atlantic
    Rocha, Cesar B.
    Tandon, Amit
    da Silveira, Ilson C. A.
    Lima, Jose Antonio M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (05) : 2734 - 2745
  • [7] LARGE-SCALE QUASI-GEOSTROPHIC MAGNETOHYDRODYNAMICS
    Balk, Alexander M.
    ASTROPHYSICAL JOURNAL, 2014, 796 (02)
  • [8] Controls insensitizing the observation of a quasi-geostrophic ocean model
    Fernández-Cara, E
    Garcia, GC
    Osses, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) : 1616 - 1639
  • [9] Covariant Lyapunov vectors of a quasi-geostrophic baroclinic model: analysis of instabilities and feedbacks
    Schubert, Sebastian
    Lucarini, Valerio
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (693) : 3040 - 3055
  • [10] Decay of solutions to a two-layer quasi-geostrophic model
    Guo, Boling
    Huang, Daiwen
    Zhang, Jingjun
    ANALYSIS AND APPLICATIONS, 2017, 15 (04) : 595 - 606