On the Motion of a Nearly Incompressible Viscous Fluid Containing a Small Rigid Body

被引:1
作者
Feireisl, Eduard [1 ]
Roy, Arnab [2 ]
Zarnescu, Arghir [3 ,4 ,5 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, Prah 1, Czech Republic
[2] Tech Univ Darmstadt, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[3] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Spain
[4] Basque Fdn Sci, IKERBASQUE, Plaza Euskadi 5, Bilbao 48009, Spain
[5] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Fluid-structure interaction; Compressible fluid; Small body motion; Low Mach number limit; WEAK SOLUTIONS; IDEAL FLOW;
D O I
10.1007/s00332-023-09949-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the motion of a compressible viscous fluid containing a moving rigid body confined to a planar domain Q ? R-2. The main result states that the influence of the body on the fluid is negligible if (i) the diameter of the body is small and (ii) the fluid is nearly incompressible (the low Mach number regime). The specific shape of the body as well as the boundary conditions on the fluid-body interface are irrelevant and collisions with the boundary ? Q are allowed. The rigid body motion may be enforced externally or governed solely by its interaction with the fluid.
引用
收藏
页数:18
相关论文
共 20 条
[1]   On a class of generalized solutions to equations describing incompressible viscous fluids [J].
Abbatiello, Anna ;
Feireisl, Eduard .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) :1183-1195
[2]   On the vanishing rigid body problem in a viscous compressible fluid [J].
Bravin, Marco ;
Necasova, Sarka .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 345 :45-77
[3]   Limits of the Stokes and Navier-Stokes equations in a punctured periodic domain [J].
Chipot, Michel ;
Droniou, Jerome ;
Planas, Gabriela ;
Robinson, James C. ;
Xue, Wei .
ANALYSIS AND APPLICATIONS, 2020, 18 (02) :211-235
[4]  
Desjardins B, 2000, COMMUN PART DIFF EQ, V25, P1399
[5]   On the motion of rigid bodies in a viscous compressible fluid [J].
Feireisl, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (04) :281-308
[6]   On the motion of a large number of small rigid bodies in a viscous incompressible fluid [J].
Feireisl, Eduard ;
Roy, Arnab ;
Zarnescu, Arghir .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 175 :216-236
[7]   On the motion of a small rigid body in a viscous compressible fluid [J].
Feireisl, Eduard ;
Roy, Arnab ;
Zarnescu, Arghir .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (05) :794-818
[8]   Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains [J].
Feireisl, Eduard ;
Kreml, Ondrej ;
Necasova, Sarka ;
Neustupa, Jiri ;
Stebel, Jan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) :125-140
[10]   On the Motion of a Small Light Body Immersed in a Two Dimensional Incompressible Perfect Fluid with Vorticity [J].
Glass, Olivier ;
Lacave, Christophe ;
Sueur, Franck .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) :1015-1065