Seismic Data Denoising Using a Self-Supervised Deep Learning Network

被引:6
|
作者
Wang, Detao [1 ,2 ]
Chen, Guoxiong [1 ]
Chen, Jianwei [1 ]
Cheng, Qiuming [1 ,2 ]
机构
[1] China Univ Geosci, State Key Lab Geol Proc & Mineral Resource, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Fac Earth Resources, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Seismic data denoising; Self-supervised; Deep learning; Neighbor2Neighbor; MODE DECOMPOSITION;
D O I
10.1007/s11004-023-10089-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Deep learning (DL) techniques have recently attracted considerable attention in the field of seismic data denoising. However, most DL-based seismic denoising models require a considerable number of paired noisy-clean samples for training, which limits their application in practice. In this paper, a novel self-supervised DL scheme for noise attenuation in reflection seismic data is proposed based on the Neighbor2Neighbor strategy. The proposed method adopts a U-shaped convolutional network as the main network and incorporates regularization loss during training to improve the stability of network training, thereby constructing an end-to-end self-learning process for seismic data denoising. Specifically, a neighborhood subsampling workflow is built on single noisy seismic data to generate paired noisy images for training. Next, an unsupervised evaluation metric, grounded solely in noisy data, is adopted to quantitatively evaluate the performance of the denoising algorithm without labeled data. The application to synthetic datasets suggests that the proposed method achieves better denoising results than traditional (e.g., f-x deconvolution and wavelet analysis) and self-supervised methods, and rivals a widely used supervised DL model, the denoising convolution neural network. In real application to seismic data denoising without noise-free labels, the proposed method more effectively suppresses migration artifacts and random noise while better preserving the signal integrity compared to other methods. These improvements demonstrate that the proposed method is an independent, novel, and powerful data-driven DL scheme suitable for real seismic data denoising.
引用
收藏
页码:487 / 510
页数:24
相关论文
共 50 条
  • [1] Seismic Data Denoising Using a Self-Supervised Deep Learning Network
    Detao Wang
    Guoxiong Chen
    Jianwei Chen
    Qiuming Cheng
    Mathematical Geosciences, 2024, 56 : 487 - 510
  • [2] Robust seismic data denoising via self-supervised deep learning
    Li, Ji
    Trad, Daniel
    Liu, Dawei
    GEOPHYSICS, 2024, 89 (05) : V437 - V451
  • [3] Self-Supervised Learning for Seismic Data Reconstruction and Denoising
    Meng, Fanlei
    Fan, QinYin
    Li, Yue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Dropout-Based Robust Self-Supervised Deep Learning for Seismic Data Denoising
    Chen, Gui
    Liu, Yang
    Zhang, Mi
    Zhang, Haoran
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] A Self-Supervised Deep Learning Method for Seismic Data Deblending Using a Blind-Trace Network
    Wang, Shirui
    Hu, Wenyi
    Yuan, Pengyu
    Wu, Xuqing
    Zhang, Qunshan
    Nadukandi, Prashanth
    Botero, German Ocampo
    Chen, Jiefu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3405 - 3414
  • [6] Self-Supervised Pretraining Transformer for Seismic Data Denoising
    Wang, Hongzhou
    Lin, Jun
    Li, Yue
    Dong, Xintong
    Tong, Xunqian
    Lu, Shaoping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 25
  • [7] A Multidirectional Deep Neural Network for Self-Supervised Reconstruction of Seismic Data
    Mahdi Abedi, Mohammad
    Pardo, David
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Diffraction denoising using self-supervised learning
    Markovic, Magdalena
    Malehmir, Reza
    Malehmir, Alireza
    GEOPHYSICAL PROSPECTING, 2023, 71 (07) : 1215 - 1225
  • [9] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [10] Self-supervised learning for denoising quasiparticle interference data
    Kuijf, Ilse S.
    Tromp, Willem O.
    Benschop, Tjerk
    Ramones, Nino Philip
    Sulangi, Miguel Antonio
    van Nieuwenburg, Evert P. L.
    Allan, Milan P.
    PHYSICAL REVIEW B, 2025, 111 (03)