Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions

被引:46
|
作者
Fan, Zhenhua [1 ,2 ]
Xu, Qifa [2 ,3 ]
Jiang, Cuixia [2 ]
Ding, Steven X. [4 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[3] Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Peoples R China
[4] Univ Duisburg Essen, Inst Automat Control & Complex Syst, D-47057 Duisburg, Germany
基金
中国国家自然科学基金;
关键词
Data models; Fault diagnosis; Employee welfare; Adaptation models; Feature extraction; Training; Task analysis; Deep learning; domain generalization (DG); intelligent fault diagnosis (IFD);
D O I
10.1109/TIE.2023.3243293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging intelligent fault diagnosis models based on domain adaptation can resolve domain shift problems produced by different working conditions. However, the prerequisite of obtaining target data in advance limits the application of these models to practical engineering scenarios. To address this challenge, a deep mixed domain generalization network (DMDGN) is proposed for intelligent fault diagnosis. In this novel model, data augmentation is applied to both class and domain spaces, adversarial learning is employed to introduce adversarial perturbations, and a domain-based discrepancy metric is used to balance intra- and interdomain distances. The model can effectively learn more domain-invariant and discriminative features from multiple source domains to perform different generalization tasks for different working loads and machines. The feasibility of the DMDGN model is verified on two public datasets and one private dataset collected from practical production processes. Empirical results show that the DMDGN model outperforms several state-of-the-art models.
引用
收藏
页码:965 / 974
页数:10
相关论文
共 50 条
  • [1] Stochastic Embedding Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Unseen Operating Conditions
    Su, Zuqiang
    Jiang, Weilong
    Xiong, Zhue
    Hu, Feng
    Yu, Hong
    Qin, Yi
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 17846 - 17855
  • [2] An Auxiliary Branch Semisupervised Domain Generalization Network for Unseen Working Conditions Bearing Fault Diagnosis
    Zeng, Liang
    Chang, Xinyu
    Chen, Jia
    Wang, Shanshan
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 42327 - 42342
  • [3] Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions
    Chen, Liang
    Li, Qi
    Shen, Changqing
    Zhu, Jun
    Wang, Dong
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1790 - 1800
  • [4] Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
    Zhao, Chao
    Shen, Weiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 189
  • [5] Adversarial Mutual Information-Guided Single Domain Generalization Network for Intelligent Fault Diagnosis
    Zhao, Chao
    Shen, Weiming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2909 - 2918
  • [6] Intra-domain self generalization network for intelligent fault diagnosis of bearings under unseen working conditions
    Huang, Kai
    Ren, Zhijun
    Zhu, Linbo
    Lin, Tantao
    Zhu, Yongsheng
    Zeng, Li
    Wan, Jin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [7] Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed
    Liao, Yixiao
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 8064 - 8075
  • [8] Single imbalanced domain generalization network for intelligent fault diagnosis of compressors in HVAC systems under unseen working conditions
    Wang, Hong
    Lin, Jun
    Zhang, Zijun
    ENERGY AND BUILDINGS, 2024, 312
  • [9] A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions
    Han, Te
    Li, Yan-Fu
    Qian, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [10] Universal Domain Adaptation in Intelligent Fault Diagnosis via Simulating Unseen Classes
    Shao, Huikai
    Jing, Dongdong
    Xia, Ning
    Tang, Zixiang
    Zhong, Dexing
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 9178 - 9189