A Surrogate Machine Learning Model for the Design of Single-Atom Catalyst on Carbon and Porphyrin Supports towards Electrochemistry

被引:30
作者
Tamtaji, Mohsen [1 ,2 ]
Chen, Shuguang [1 ,2 ]
Hu, Ziyang [1 ,2 ]
Goddard, William A., III [3 ]
Chen, GuanHua [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[2] Hong Kong Quantum AI Lab Ltd, Hong Kong 999077, Peoples R China
[3] CALTECH, Mat & Proc Simulat Ctr, MC 139-74, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
OXYGEN REDUCTION; DESCRIPTORS; DISCOVERY;
D O I
10.1021/acs.jpcc.3c00765
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We apply the machine learning (ML) tool to calculatethe Gibbsfree energy (Delta G) of reaction intermediatesrapidly and accurately as a guide for designing porphyrin- and graphene-supportedsingle-atom catalysts (SACs) toward electrochemical reactions. Basedon the 2105 DFT calculation data from the literature, we trained asupport vector machine (SVR) algorithm. The hyperparameters were optimizedusing Bayesian optimization along with 10-fold cross-validation toavoid overfitting. Based on the Shapley Additive exPlanation (SHAP)and permutation methods, the feature importance analysis suggeststhat the most important parameters are the number of pyridinic nitrogen(Npy), the number of d electrons (theta(d)), and the numberof valence electrons of reaction intermediates. Inspired by this featureimportance analysis and the Pearson correlation coefficient, we founda linear dependent, simple, and general descriptor (phi) to describe Delta G of reaction intermediates (e.g., Delta G (OH*) = 0.020 phi -2.190). Using the trained SVR algorithm, Delta G (OH*), Delta G (O*), Delta G (OOH*), Delta G (OO*), Delta G (H*), Delta G (COOH*), Delta G (CO*), and Delta G (N2*) intermediates are predicted for the oxygenreduction reaction (ORR), the oxygen evolution reaction (OER), thehydrogen evolution reaction (HER), and the CO2 reductionreaction (CO2RR). The SVR model predicts an ORR overpotentialof 0.51 V and an HER overpotential of 0.22 V for FeN4-SAC. Moreover,we used the SVR algorithm for high-throughput screening of SACs, suggestingnew SACs with low ORR overpotentials. This strategy provides a data-drivencatalyst design method that significantly reduces the costs of DFTcalculations while providing the means for designing SACs for electrocatalysisand beyond.
引用
收藏
页码:9992 / 10000
页数:9
相关论文
共 54 条
[1]   Synthesis of a Nickel Single-Atom Catalyst Based on Ni-N4-xCx Active Sites for Highly Efficient CO2 Reduction Utilizing a Gas Diffusion Electrode [J].
Abbas, Syed Asad ;
Song, Jun Tae ;
Tan, Ying Chuan ;
Nam, Ki Min ;
Oh, Jihun ;
Jung, Kwang-Deog .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :8739-8745
[2]   Uncovering the coordination effect on the Ni single-atom catalysts for CO2 reduction including vacancy defect and non-vacancy defect structures [J].
An, Beibei ;
Zhou, Jingsheng ;
Zhu, Zhiyong ;
Li, Yuanyuan ;
Wang, Li ;
Zhang, Jinglai .
FUEL, 2022, 310
[3]   Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors [J].
Andersen, Mie ;
Reuter, Karsten .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (12) :2741-2749
[4]   Extracting structural motifs from pair distribution function data of nanostructures using explainable machine learning [J].
Anker, Andy S. ;
Kjaer, Emil T. S. ;
Juelsholt, Mikkel ;
Christiansen, Troels Lindahl ;
Skjaervo, Susanne Linn ;
Jorgensen, Mads Ry Vogel ;
Kantor, Innokenty ;
Sorensen, Daniel Risskov ;
Billinge, Simon J. L. ;
Selvan, Raghavendra ;
Jensen, Kirsten M. O. .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[5]   Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations [J].
Boonpalit, Kajjana ;
Wongnongwa, Yutthana ;
Prommin, Chanatkran ;
Nutanong, Sarana ;
Namuangruk, Supawadee .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) :12936-12945
[6]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072
[7]   Recent Advances on Nanomaterials for Electrocatalytic CO2 Conversion [J].
Chen, Chao ;
Zhang, Zhenyu ;
Li, Guilin ;
Li, Lei ;
Lin, Zhan .
ENERGY & FUELS, 2021, 35 (09) :7485-7510
[8]   A Critical Review of Machine Learning of Energy Materials [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Deng, Zhi ;
Ong, Shyue Ping .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[9]   Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning [J].
Deng, Chaofang ;
Su, Yang ;
Li, Fuhua ;
Shen, Weifeng ;
Chen, Zhongfang ;
Tang, Qing .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) :24563-24571
[10]   A Few Questions about Single-Atom Catalysts: When Modeling Helps [J].
Di Liberto, Giovanni ;
Tosoni, Sergio ;
Cipriano, Luis A. ;
Pacchioni, Gianfranco .
ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (09) :986-995