Investigating Wafer Quality in Industrial Czochralski-Grown Gallium-Doped p-Type Silicon Ingots with Melt Recharging

被引:15
作者
Basnet, Rabin [1 ]
Sun, Chang [2 ]
Le, Tien [1 ]
Yang, Zhongshu [1 ]
Liu, Anyao [1 ]
Jin, Qian [2 ]
Wang, Yichun [2 ]
Macdonald, Daniel [1 ]
机构
[1] Australian Natl Univ, Sch Engn, Canberra, ACT 2601, Australia
[2] LONGI Green Energy Technol Co Ltd, R&D Ctr Wafer BU, Xian 710018, Shaanxi, Peoples R China
关键词
gallium-doped ingots; gettering; iron-gallium pairs; recharged-Cz-Si; tabula rasa; IRON-ACCEPTOR PAIRS; CRYSTALLINE SILICON; LIFETIME; IMPROVE;
D O I
10.1002/solr.202300304
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Herein, a systematic study of the electronic quality of gallium-doped p-type silicon wafers from Czochralski-grown ingots with melt recharging is presented. It is found that in the as-grown state, the ingots contain interstitial iron concentrations in the range of 3 x 10(9)-2 x 10(10) cm(-3), with a trend of slightly higher concentrations toward the tail end of each ingot, and in subsequently grown ingots. However, analysis of the effective lifetimes indicates that iron-gallium pairs are not the dominant recombination centers in the as-grown state. Moreover, when these wafers are subjected to a tabula rasa step, an increase in the iron concentration is observed in the range of 1 x 10(10)-6 x 10(10) cm(-3), with iron-gallium pairs becoming the dominant recombination centers. This is possibly caused by the dissolution of pre-existing precipitated iron in the wafers. Nevertheless, the negative impact of iron contamination can be dramatically reduced by subjecting the wafers to a phosphorus diffusion gettering step, as is commonly incorporated in the fabrication of p-type passivated emitter and rear cells. Therefore, it is concluded that the quality of the ingots is not limited by iron contamination, even after multiple ingots are pulled from the recharged melt.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Ring defects in n-type Czochralski-grown silicon: A high spatial resolution study using Fourier-transform infrared spectroscopy, micro-photoluminescence, and micro-Raman [J].
Basnet, Rabin ;
Sun, Chang ;
Wu, Huiting ;
Nguyen, Hieu T. ;
Rougieux, Fiacre Emile ;
Macdonald, Daniel .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (24)
[2]   Methods to Improve Bulk Lifetime in n-Type Czochralski-Grown Upgraded Metallurgical-Grade Silicon Wafers [J].
Basnet, Rabin ;
Rougieux, Fiacre E. ;
Sun, Chang ;
Phang, Sieu P. ;
Samundsett, Chris ;
Einhaus, Roland ;
Degoulange, Julien ;
Macdonald, Daniel .
IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (04) :990-996
[3]   SOLAR-GRADE SILICON [J].
BATHEY, BR ;
CRETELLA, MC .
JOURNAL OF MATERIALS SCIENCE, 1982, 17 (11) :3077-3096
[4]   Impact of Metal Contamination in Silicon Solar Cells [J].
Coletti, Gianluca ;
Bronsveld, Paula C. P. ;
Hahn, Giso ;
Warta, Wilhelm ;
Macdonald, Daniel ;
Ceccaroli, Bruno ;
Wambach, Karsten ;
Le Quang, Nam ;
Fernandez, Juan M. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (05) :879-890
[5]   Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling [J].
Fenning, D. P. ;
Hofstetter, J. ;
Bertoni, M. I. ;
Hudelson, S. ;
Rinio, M. ;
Lelievre, J. F. ;
Lai, B. ;
del Canizo, C. ;
Buonassisi, T. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[6]   Multiple batch recharging for industrial CZ silicon growth [J].
Fickett, B ;
Mihalik, G .
JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) :580-585
[7]  
Glunz SW, 1999, PROG PHOTOVOLTAICS, V7, P463, DOI 10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO
[8]  
2-H
[9]  
Graff K., 2013, Metal impurities in silicon-device fabrication, V24
[10]   Gallium-Doped Silicon for High-Efficiency Commercial Passivated Emitter and Rear Solar Cells [J].
Grant, Nicholas E. ;
Altermatt, Pietro P. ;
Niewelt, Tim ;
Post, Regina ;
Kwapil, Wolfram ;
Schubert, Martin C. ;
Murphy, John D. .
SOLAR RRL, 2021, 5 (04)