The persistent homology of mitochondrial ATP synthases

被引:7
|
作者
Sinha, Savar D. [1 ]
Wideman, Jeremy G. [1 ]
机构
[1] Arizona State Univ, Biodesign Inst, Ctr Mech Evolut, Sch Life Sci, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
MULTIPLE SEQUENCE ALIGNMENT; DIMER REVEALS; ORIGIN; TREE; ARRANGEMENT; SUBUNITS; ROOT;
D O I
10.1016/j.isci.2023.106700
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Relatively little is known about ATP synthase structure in protists, and the inves-tigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP syn-thase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a similar to 1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heter-oloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] CHLOROPLAST AND PLANT MITOCHONDRIAL ATP SYNTHASES
    GLASER, E
    NORLING, B
    CURRENT TOPICS IN BIOENERGETICS, 1991, 16 : 223 - 263
  • [2] Bedaquiline inhibits the yeast and human mitochondrial ATP synthases
    Luo, Min
    Zhou, Wenchang
    Patel, Hiral
    Srivastava, Anurag P.
    Symersky, Jindrich
    Bonar, Michal M.
    Faraldo-Gomez, Jose D.
    Liao, Maofu
    Mueller, David M.
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [3] Bedaquiline inhibits the yeast and human mitochondrial ATP synthases
    Min Luo
    Wenchang Zhou
    Hiral Patel
    Anurag P. Srivastava
    Jindrich Symersky
    Michał M. Bonar
    José D. Faraldo-Gómez
    Maofu Liao
    David M. Mueller
    Communications Biology, 3
  • [4] Supramolecular organization of mitochondrial ATP synthases: Electron microscopy study
    Dudkina, Natalya V.
    Ooostergetel, Gert
    Keegstra, Wilko
    Heinemeyer, Jesco
    Braun, Hans-Peter
    Boekema, Egbert J.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2008, 1777 : S20 - S20
  • [5] An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases
    Gahura, Ondrej
    Muhleip, Alexander
    Hierro-Yap, Carolina
    Panicucci, Brian
    Jain, Minal
    Hollaus, David
    Slapnickova, Martina
    Zikova, Alena
    Amunts, Alexey
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases
    Ondřej Gahura
    Alexander Mühleip
    Carolina Hierro-Yap
    Brian Panicucci
    Minal Jain
    David Hollaus
    Martina Slapničková
    Alena Zíková
    Alexey Amunts
    Nature Communications, 13
  • [7] Homology model of starch synthases
    Kuhn, M
    Ballicora, MA
    FASEB JOURNAL, 2006, 20 (05): : A904 - A904
  • [8] The structure and function of mitochondrial F1F0-ATP synthases
    Devenish, Rodney J.
    Prescott, Mark
    Rodgers, Andrew J. W.
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 267, 2008, 267 : 1 - +
  • [9] The mitochondrial permeability transition pore: channel formation by F-ATP synthases
    Bernardi, P.
    ACTA PHYSIOLOGICA, 2015, 213 : 12 - 12
  • [10] Morphological multiparameter filtration and persistent homology in mitochondrial image analysis
    Chung, Yu-Min
    Hu, Chuan-Shen
    Sun, Emily
    Tseng, Henry C.
    PLOS ONE, 2024, 19 (09):