Correction of Satellite Sea Surface Salinity Products Using Ensemble Learning Method

被引:6
作者
Bao, Senliang [1 ]
Zhang, Ren [1 ]
Wang, Huizan [1 ]
Yan, Hengqian [1 ]
Chen, Jian [2 ]
Wang, Yangjun [1 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha 410073, Peoples R China
[2] Beijing Inst Appl Meteorol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Satellites; Salinity (geophysical); Oceans; Meteorology; Ocean temperature; Contamination; Vegetation; Random forest; bias correction; satellite data; sea surface salinity; OCEAN DATA ASSIMILATION; PACIFIC-OCEAN; INDIAN-OCEAN; SMOS; AQUARIUS; IMPACT; FORECASTS;
D O I
10.1109/ACCESS.2021.3057886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although salinity satellites can provide high-resolution global sea surface salinity (SSS) data, the satellite data still display large errors close to the coast. In this paper, a nonlinear empirical method based on random forest is proposed to correct two Soil Moisture and Ocean Salinity (SMOS) L3 products in the tropical Indian Ocean, including SMOS BEC and SMOS CATDS data. The agreement between in-situ data and the corrected SMOS data is better than that between in-situ data and the original satellite data. The root-mean-square deviation (RMSD) of the satellite SSS data decreased from 0.366 to 0.275 and from 0.367 to 0.255 for SMOS BEC and SMOS CATDS, respectively. The effect of the correction model was better in the Arabian Sea than in the Bay of Bengal. The RMSD of corrected BEC (CATDS) SSS was reduced from 0.44 (0.48) to 0.276 (0.269), and the correlation coefficient was increased to 0.915 from 0.741(0.801) in the Arabian Sea while the correlation coefficient improved less than 0.02 in the Bay of Bengal. The cross-validation results highlight the robustness and effectiveness of the correction model. Additionally, the effects of different features on the correction model are discussed to demonstrate the vital role of geographical information in the correction of satellite SSS data. The proposed method outperformed other machine-learning methods with respect to the RMSD and correlation coefficient.
引用
收藏
页码:17870 / 17881
页数:12
相关论文
共 46 条
[1]   Bay of Bengal Sea surface salinity variability using a decade of improved SMOS re-processing [J].
Akhil, V. P. ;
Vialard, J. ;
Lengaigne, M. ;
Keerthi, M. G. ;
Boutin, J. ;
Vergely, J. L. ;
Papa, F. .
REMOTE SENSING OF ENVIRONMENT, 2020, 248
[2]   Spatial and temporal scales of sea surface salinity in the tropical Indian Ocean from SMOS, Aquarius and SMAP [J].
Bao, Senliang ;
Wang, Huizan ;
Zhang, Ren ;
Yan, Hengqian ;
Chen, Jian .
JOURNAL OF OCEANOGRAPHY, 2020, 76 (05) :389-400
[3]   Comparison of Satellite-Derived Sea Surface Salinity Products from SMOS, Aquarius, and SMAP [J].
Bao, Senliang ;
Wang, Huizan ;
Zhang, Ren ;
Yan, Hengqian ;
Chen, Jian .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (03) :1932-1944
[4]   Salinity Profile Estimation in the Pacific Ocean from Satellite Surface Salinity Observations [J].
Bao, Senliang ;
Zhang, Ren ;
Wang, Huizan ;
Yan, Hengqian ;
Yu, Yang ;
Chen, Jian .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2019, 36 (01) :53-68
[5]  
Belward A., 2016, 135201 WORLD MET ORG
[6]   Gridded surface wind fields from Metop/ASCAT measurements [J].
Bentamy, Abderrahim ;
Fillon, Denis Croize .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (06) :1729-1754
[7]   New SMOS Sea Surface Salinity with reduced systematic errors and improved variability [J].
Boutin, J. ;
Vergely, J. L. ;
Marchand, S. ;
D'Amico, F. ;
Hasson, A. ;
Kolodziejczyk, N. ;
Reul, N. ;
Reverdin, G. ;
Vialard, J. .
REMOTE SENSING OF ENVIRONMENT, 2018, 214 :115-134
[8]   SATELLITE AND IN SITU SALINITY Understanding Near-Surface Stratification and Subfootprint Variability [J].
Boutin, J. ;
Chao, Y. ;
Asher, W. E. ;
Delcroix, T. ;
Drucker, R. ;
Drushka, K. ;
Kolodziejczyk, N. ;
Lee, T. ;
Reul, N. ;
Reverdin, G. ;
Schanze, J. ;
Soloviev, A. ;
Yu, L. ;
Anderson, J. ;
Brucker, L. ;
Dinnat, E. ;
Santos-Garcia, A. ;
Jones, W. L. ;
Maes, C. ;
Meissner, T. ;
Tang, W. ;
Vinogradova, N. ;
Ward, B. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (08) :1391-+
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   A SEEK filter assimilation of sea surface salinity from Aquarius in an OGCM: Implication for surface dynamics and thermohaline structure [J].
Chakraborty, Abhisek ;
Sharma, Rashmi ;
Kumar, Raj ;
Basu, Sujit .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (08) :4777-4796