Aurora retrieval in all-sky images based on hash vision transformer

被引:0
作者
Zhang, Hengyue [1 ]
Tang, Hailiang [1 ]
Zhang, Wenxiao [2 ]
机构
[1] Qilu Normal Univ, Sch Informat Sci & Engn, Jinan 250200, Peoples R China
[2] Shandong Univ Engn & Vocat Technol, Sch Finance & Econ, Jinan, Peoples R China
关键词
Aurora image retrieval; Vision transformer; Deep learning; All-sky images; CLASSIFICATION; SCALE;
D O I
10.1016/j.heliyon.2023.e20609
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Auroras are bright occurrences when high-energy particles from the magnetosphere and solar wind enter Earth's atmosphere through the magnetic field and collide with atoms in the upper atmosphere. The morphological and temporal characteristics of auroras are essential for studying large-scale magnetospheric processes. While auroras are visible to the naked eye from the ground, scientists use deep learning algorithms to analyze all-sky images to understand this phenomenon better. However, the current algorithms face challenges due to inefficient utilization of global features and neglect the excellent fusion of local and global feature representations extracted from aurora images. Hence, this paper introduces a Hash-Transformer model based on Vision Transformer for aurora retrieval from all-sky images. Experimental results based on real-world data demonstrate that the proposed method effectively improves aurora image retrieval performance. It provides a new avenue to study aurora phenomena and facilitates the development of related fields.
引用
收藏
页数:10
相关论文
共 28 条
[1]   The Earth's Magnetosphere: A Systems Science Overview and Assessment [J].
Borovsky, Joseph E. ;
Alejandro Valdivia, Juan .
SURVEYS IN GEOPHYSICS, 2018, 39 (05) :817-859
[2]  
Bosch A, 2007, IEEE I CONF COMP VIS, P1863
[3]   HashNet: Deep Learning to Hash by Continuation [J].
Cao, Zhangjie ;
Long, Mingsheng ;
Wang, Jianmin ;
Yu, Philip S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5609-5618
[4]   TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval [J].
Chen, Yongbiao ;
Zhang, Sheng ;
Liu, Fangxin ;
Chang, Zhigang ;
Ye, Mang ;
Qi, Zhengwei .
PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022, 2022, :127-136
[5]   Automatic Classification of Auroral Images From the Oslo Auroral THEMIS (OATH) Data set Using Machine Learning [J].
Clausen, Lasse B. N. ;
Nickisch, Hannes .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (07) :5640-5647
[6]   The THEMIS all-sky imaging array -: system design and initial results from the prototype imager [J].
Donovan, Eric ;
Mende, Stephen ;
Jackel, Brian ;
Frey, Harald ;
Syrjasuo, Mikko ;
Voronkov, Igor ;
Trondsen, Trond ;
Peticolas, Laura ;
Angelopoulos, Vassilis ;
Harris, Stewart ;
Greffen, Mike ;
Connors, Martin .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2006, 68 (13) :1472-1487
[7]   A Decade Survey of Content Based Image Retrieval Using Deep Learning [J].
Dubey, Shiv Ram .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) :2687-2704
[8]  
El-Nouby A, 2021, Arxiv, DOI arXiv:2102.05644
[9]  
Gasteiger J., 2020, ARXIV
[10]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587